File size: 1,640 Bytes
c3eeb30
 
da663cf
 
 
 
 
 
 
c3eeb30
 
 
 
 
 
da663cf
c3eeb30
da663cf
 
 
c3eeb30
da663cf
c3eeb30
da663cf
 
 
 
c3eeb30
da663cf
c3eeb30
da663cf
 
 
 
 
 
c3eeb30
da663cf
 
c3eeb30
da663cf
 
 
 
 
 
 
 
 
 
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
 
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
 
 
c3eeb30
da663cf
c3eeb30
da663cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
datasets:
- elyza/ELYZA-tasks-100
license: apache-2.0
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b-instruct
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

## Required Libraries and Their Versions

- trl==0.12.2
- transformers<4.47.0
- tokenizers==0.21.0

## Usage

```py
results = []
system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書きなさい。"
for data in tqdm(datasets):

  input_text = data["input"]

  prompt = f"""
  {system_text}
  ### 指示
  {input_text}
  ### 応答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input_text, "output": output})

```


## Model Details

- **Model type:** Transformer-based Language Model

## Datasets

### Instruction tuning

| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)| A manually constructed instruction dataset |

## License

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)