File size: 1,720 Bytes
c3eeb30
 
da663cf
 
 
 
 
 
 
c3eeb30
 
 
 
 
 
da663cf
c3eeb30
da663cf
 
 
c3eeb30
da663cf
c3eeb30
da663cf
 
9484d07
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
 
 
 
 
 
c3eeb30
da663cf
 
c3eeb30
da663cf
 
 
 
 
 
 
 
 
 
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
 
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
c3eeb30
da663cf
 
 
c3eeb30
da663cf
c3eeb30
da663cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
datasets:
- elyza/ELYZA-tasks-100
license: apache-2.0
language:
- ja
base_model:
- llm-jp/llm-jp-3-13b-instruct
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

## Required Libraries and Their Versions

- trl==0.12.2
- transformers<4.47.0
- tokenizers==0.21.0

## Usage

```py
results = []
system_text = "以下は、タスクを説明する指示です。要求を適切に満たす回答を**簡潔に**書いてください。回答の後ろに、回答の理由を**1文で**書いてください。"
for data in tqdm(datasets):

  input_text = data["input"]

  prompt = f"""
  {system_text}
  ### 指示
  {input_text}
  ### 応答
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input_text, "output": output})

```


## Model Details

- **Model type:** Transformer-based Language Model

## Datasets

### Instruction tuning

| Language | Dataset | description |
|:---|:---|:---|
|Japanese|[elyza/ELYZA-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)| A manually constructed instruction dataset |

## License

[Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)