jojo-sdxl-lora / README.md
youlun77's picture
End of training
aae5464 verified
|
raw
history blame
3.74 kB
metadata
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - diffusers-training
  - text-to-image
  - diffusers
  - lora
  - template:sd-lora
widget:
  - text: an astronaut riding a horse, in the style of JOJO
    output:
      url: image_0.png
  - text: an astronaut riding a horse, in the style of JOJO
    output:
      url: image_1.png
  - text: an astronaut riding a horse, in the style of JOJO
    output:
      url: image_2.png
  - text: an astronaut riding a horse, in the style of JOJO
    output:
      url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: picture in the style of JOJO
license: openrail++

SDXL LoRA DreamBooth - youlun77/jojo-sdxl-lora

Prompt
an astronaut riding a horse, in the style of JOJO
Prompt
an astronaut riding a horse, in the style of JOJO
Prompt
an astronaut riding a horse, in the style of JOJO
Prompt
an astronaut riding a horse, in the style of JOJO

Model description

These are youlun77/jojo-sdxl-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('youlun77/jojo-sdxl-lora', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='youlun77/jojo-sdxl-lora', filename='jojo-sdxl-lora_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('an astronaut riding a horse, in the style of JOJO').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.