younggi's picture
update model card README.md
c523d6a
|
raw
history blame
4.45 kB
metadata
license: cc-by-nc-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-base-finetuned-ucf101-subset
    results: []

videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2709
  • Accuracy: 0.9540

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3750

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2549 0.02 75 2.2707 0.0270
1.7546 1.02 150 1.8893 0.3514
0.8462 2.02 225 0.8723 0.6216
0.551 3.02 300 0.4068 0.8108
0.6627 4.02 375 0.6916 0.7297
0.4383 5.02 450 0.5512 0.7568
0.3398 6.02 525 0.4060 0.8378
0.0769 7.02 600 0.8299 0.8108
0.0077 8.02 675 0.0570 0.9730
0.0055 9.02 750 0.0168 1.0
0.002 10.02 825 0.0497 0.9730
0.1242 11.02 900 0.2132 0.9459
0.0022 12.02 975 0.0026 1.0
0.0074 13.02 1050 0.0577 0.9730
0.0038 14.02 1125 0.0137 1.0
0.0011 15.02 1200 0.0022 1.0
0.001 16.02 1275 0.0025 1.0
0.0009 17.02 1350 0.0059 1.0
0.0024 18.02 1425 0.1411 0.9730
0.1709 19.02 1500 0.0041 1.0
0.0008 20.02 1575 0.0489 0.9730
0.0007 21.02 1650 0.0116 1.0
0.0008 22.02 1725 0.0741 0.9730
0.0008 23.02 1800 0.1699 0.9730
0.0007 24.02 1875 0.1828 0.9730
0.0006 25.02 1950 0.1652 0.9730
0.0006 26.02 2025 0.1608 0.9730
0.0005 27.02 2100 0.1595 0.9730
0.0005 28.02 2175 0.1445 0.9730
0.0006 29.02 2250 0.1488 0.9730
0.0005 30.02 2325 0.1202 0.9730
0.0005 31.02 2400 0.1238 0.9730
0.0004 32.02 2475 0.1225 0.9730
0.0005 33.02 2550 0.2320 0.9459
0.0004 34.02 2625 0.0791 0.9730
0.0005 35.02 2700 0.1285 0.9730
0.0004 36.02 2775 0.1719 0.9730
0.0007 37.02 2850 0.1799 0.9730
0.0004 38.02 2925 0.1936 0.9730
0.0004 39.02 3000 0.1844 0.9730
0.0004 40.02 3075 0.1790 0.9730
0.0004 41.02 3150 0.1747 0.9730
0.0004 42.02 3225 0.1359 0.9730
0.0004 43.02 3300 0.1283 0.9730
0.0004 44.02 3375 0.1209 0.9730
0.0004 45.02 3450 0.0876 0.9730
0.0004 46.02 3525 0.0933 0.9730
0.0004 47.02 3600 0.0976 0.9730
0.0004 48.02 3675 0.1011 0.9730
0.0004 49.02 3750 0.1050 0.9730

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.8.0+cu111
  • Datasets 2.7.1
  • Tokenizers 0.13.2