metadata
license: apache-2.0
language:
- zh
metrics:
- accuracy
- precision
base_model:
- Qwen/Qwen2.5-0.5B
The model is an intermediate product of the EPCD (Easy-Data-Clean-Pipeline) project, primarily used to distinguish between the main content and non-content (such as book introductions, publisher information, writing standards, revision notes) of medical textbooks after performing OCR using MinerU. The base model uses Qwen2.5-0.5B, avoiding the length limitation of the Bert Tokenizer while providing higher accuracy.
Data Composition
- The data consists of scanned PDF copies of textbooks, converted into
Markdown
files throughOCR
using MinerU. After a simple regex-based cleaning, the samples were split using\n
, and aBloom
probabilistic filter was used for precise deduplication, resulting in 50,000 samples. Due to certain legal considerations, we may not plan to make the dataset publicly available. - Due to the nature of textbooks, most samples are main content. According to statistics, in our dataset, 79.89% (40,000) are main content samples, while 20.13% (10,000) are non-content samples. Considering data imbalance, we evaluate the model's performance on both Precision and Accuracy metrics on the test set.
- To ensure consistency in the data distribution between the test set and the training set, we used stratified sampling to select 10% of the data as the test set.
Training Techniques
- To maximize model accuracy, we used Bayesian optimization (TPE algorithm) and Hyperband pruning (HyperbandPruner) to accelerate hyperparameter tuning.
Model Performance
Dataset | Accuracy | Precision |
---|---|---|
Train | 0.9894 | 0.9673 |
Test | 0.9788 | 0.9548 |
Usage
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
ID2LABEL = {0: "正文", 1: "非正文"}
model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification'
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = '下列为修订说明'
encoding = tokenizer(text, return_tensors='pt')
encoding = {k: v.to(model.device) for k, v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
id = torch.argmax(logits, dim=-1).item()
response = ID2LABEL[id]
print(response)