ytzfhqs's picture
Update README.md
0e06b1c verified
|
raw
history blame
5.47 kB
---
license: apache-2.0
datasets:
- Skywork/SkyPile-150B
- ticoAg/shibing624-medical-pretrain
- togethercomputer/RedPajama-Data-V2
- medalpaca/medical_meadow_wikidoc
- nlp-guild/medical-data
language:
- en
- zh
pipeline_tag: text-classification
---
# fasttext-med-en-zh-identification
[[中文]](#chinese) [[English]](#english)
<a id="english"></a>
This model is an intermediate result of the [EPCD (Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP) project. It is primarily designed to accurately distinguish between Chinese and English samples in medical pretraining datasets. The model framework uses [fastText](https://github.com/facebookresearch/fastText).
## Data Composition
### General Chinese Pretraining Dataset
- [Skywork/SkyPile-150B](https://huggingface.co/datasets/Skywork/SkyPile-150B)
### Medical Chinese Pretraining Dataset
- [ticoAg/shibing624-medical-pretrain](https://huggingface.co/datasets/ticoAg/shibing624-medical-pretrain)
### General English Pretraining Dataset
- [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
### Medical English Pretraining Datasets
- [medalpaca/medical_meadow_wikidoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc)
- [nlp-guild/medical-data](https://huggingface.co/datasets/nlp-guild/medical-data)
The above datasets are high-quality, open-source datasets, which can save a lot of effort in data cleaning. Many thanks to the developers for their contributions to the open-source data community!
## Data Cleaning Process
- Initial dataset processing:
- For the Chinese training datasets, the pretraining corpus is split by `\n`, and any leading or trailing spaces are removed.
- For the English training datasets, the pretraining corpus is split by `\n`, all letters are converted to lowercase, and any leading or trailing spaces are removed.
- Word count statistics:
- For Chinese, the [jieba](https://github.com/fxsjy/jieba) package is used for tokenization, and stopwords and non-Chinese characters are further filtered using [jionlp](https://github.com/dongrixinyu/JioNLP).
- For English, the [nltk](https://github.com/nltk/nltk) package is used for tokenization, with built-in stopwords for filtering.
- Sample filtering based on word count (heuristic thresholds):
- For Chinese: Keep only samples with more than 5 words.
- For English: Keep only samples with more than 5 words.
- Dataset splitting: 90% of the data is used for training and 10% for testing.
## Model Performance
| Dataset | Precision | Recall |
|---------|----------|----------|
| Train | 0.9987 | 0.9987 |
| Test | 0.9962 | 0.9962 |
## Usage Example
```python
import fasttext
from huggingface_hub import hf_hub_download
def to_low(text):
return text.strip().lower()
model_path = hf_hub_download(repo_id="ytzfhqs/fasttext-med-en-zh-identification", filename="model.bin")
model = fasttext.load_model(model_path)
model.predict(to_low('Hello, world!'))
```
# fasttext-med-en-zh-identification
[[中文]](#chinese) [[English]](#english)
<a id="chinese"></a>
该模型为[EPCD(Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP)项目的中间产物,主要用来区分医疗预训练语料中中文与英文样本。模型框架使用[fastText](https://github.com/facebookresearch/fastText)。
# 数据组成
## 中文通用预训练数据集
- [Skywork/SkyPile-150B](https://huggingface.co/datasets/Skywork/SkyPile-150B)
## 中文医疗预训练数据集
- [ticoAg/shibing624-medical-pretrain](https://huggingface.co/datasets/ticoAg/shibing624-medical-pretrain)
## 英文通用预训练数据集
- [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
## 英文医疗预训练数据集
- [medalpaca/medical_meadow_wikidoc](https://huggingface.co/datasets/medalpaca/medical_meadow_wikidoc)
- [nlp-guild/medical-data](https://huggingface.co/datasets/nlp-guild/medical-data)
上述数据集均为高质量开源数据集,可以节省很多数据清洗的工作,感谢上述开发者对开源数据社区的支持!
# 数据清洗流程
- 数据集初步整理
- 对中文训练数据集,按`\n`分割预训练语料,去除开头和结尾可能存在的空格。
- 对英文训练数据集,按`\n`分割预训练语料,将所有字母全部变为小写,去除开头和结尾可能存在的空格。
- 统计词数量,具体的:
- 对中文,使用[jieba](https://github.com/fxsjy/jieba)包进行分词,并利用[jionlp](https://github.com/dongrixinyu/JioNLP)进一步过滤停用词和非中文字符。
- 对英文,使用[nltk](https://github.com/nltk/nltk)包进行分词,并利用内置停用词进行过滤。
- 根据词数量进行样本过滤,具体的(经验数值):
- 对中文:仅保留词数量大于5的样本。
- 对英文:仅保留词数量大于5的样本。
- 切分数据集,训练集比例为0.9,测试集比例为0.1。
# 模型表现
|Dataset | Accuracy |
|-------|-------|
|Train | 0.9994|
|Test | 0.9998|
## Usage Example
```python
import fasttext
from huggingface_hub import hf_hub_download
def to_low(text):
return text.strip().lower()
model_path = hf_hub_download(repo_id="ytzfhqs/fasttext-med-en-zh-identification", filename="model.bin")
model = fasttext.load_model(model_path)
model.predict(to_low('Hello, world!'))
```