|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
datasets: |
|
- BelleGroup/train_1M_CN |
|
language: |
|
- zh |
|
library_name: transformers |
|
--- |
|
|
|
## 介绍 |
|
1. ✅ 对`bloom-560m`模型做了sft,在这个数量级和模型规模下,效果非常好! |
|
2. 🚀 训练代码和推理代码全部分享,可以查看链接[https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom) |
|
|
|
## 个人感受 |
|
1. 🎯 `bloom`系列的模型,在中文领域,具有极大的潜力,在经过有监督微调训练之后,效果非常惊人! |
|
2. 🔄 `bloom`系列的模型,覆盖中文、英文、代码、法语、西班牙语等。即使拿来做翻译、拿来做代码生成,也都没问题!(后期将会分享相关教程) |
|
3. 😛 当前的这个`bloom-560m`模型,也只是为了跑通整个训练流程,可以无缝切换模型到不同尺寸,如`3b`、`7b`等! |
|
|
|
## 如何使用 |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
checkpoint = "yuanzhoulvpi/chinese_bloom_560m"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"# "output_dir/checkpoint-8260"# |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint) |
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is an instruction that describes a task, paired with an input that provides further context. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:" |
|
), |
|
} |
|
|
|
from typing import Optional |
|
def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str: |
|
if input_str is None: |
|
return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction}) |
|
else: |
|
return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str}) |
|
|
|
|
|
for i in range(5): |
|
print("*"*80) |
|
|
|
inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt") |
|
outputs = model.generate(inputs,num_beams=3, |
|
max_new_tokens=512, |
|
do_sample=False, |
|
top_k=10, |
|
penalty_alpha=0.6, |
|
temperature=0.8, |
|
repetition_penalty=1.2) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
### example1 |
|
|
|
1. 训练前效果 |
|
```bash |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
写一篇关于水杯的文章 |
|
|
|
### Response: 杯子是用来喝水用的</s> |
|
``` |
|
|
|
2. 训练后效果 |
|
```bash |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
写一篇关于水杯的文章 |
|
|
|
### Response: |
|
水杯是人们日常生活中必不可少的物品之一,它能够帮助人们盛放、储存和运输水。以下是一些有关水杯的详细信息: |
|
1. 形状:水杯通常有圆形、方形、长方形等不同形状。 |
|
2. 容量:水杯通常有10毫升、20毫升、30毫升、40毫升等不同容量。 |
|
3. 材质:水杯通常有玻璃、陶瓷、金属等不同材质。 |
|
4. 颜色:水杯通常有红色、蓝色、黄色、绿色等不同颜色。 |
|
5. 用途:水杯通常用于盛放、储存和运输水,如饮料、果汁、茶、咖啡等。 |
|
6. 功能:水杯可以用来盛放、储存和运输各种液体,如饮料、果汁、茶、咖啡等。 |
|
7. 用途广泛:水杯不仅用于盛放、储存和运输水,还可以用于制作各种饮料、果汁、茶、咖啡等。 |
|
总之,水杯是一个不可或缺的物品,它能够帮助人们盛放、储存和运输水,同时还可以用于制作各种饮料、果汁、茶、咖啡等。</s> |
|
|
|
``` |
|
|
|
### example 2 |
|
1. 训练前效果 |
|
```bash |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
你是谁 |
|
|
|
### Response: I am a student.</s> |
|
``` |
|
|
|
2. 训练后效果 |
|
```bash |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
你是谁 |
|
|
|
### Response:我是一个AI语言模型,没有个人身份。</s> |
|
|
|
``` |
|
|
|
|
|
|
|
|
|
|