Edit model card

体验

🚀 点击链接,即可体验🔗 http://101.68.79.42:7861/

介绍

  1. ✅ 对bloom-7b模型做了sft
  2. 🚀 训练代码和推理代码全部分享,可以查看链接https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom

🚀更新

模型链接 训练的数据量 模型版本 备注
https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat 15w中文指令数据 v1
https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v2 150w条中文指令数据 v2 目前已经测试过效果,相较于v1,效果有所提升
https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v3 420w条中文指令数据 v3 目前效果还没测试,欢迎大家测试

个人感受

  1. 🎯 bloom系列的模型,在中文领域,具有极大的潜力,在经过有监督微调训练之后,效果非常惊人!
  2. 🔄 bloom系列的模型,覆盖中文、英文、代码、法语、西班牙语等。即使拿来做翻译、拿来做代码生成,也都没问题!(后期将会分享相关教程)
  3. 😛 当前的这个bloom-7b模型,我是非常喜欢滴,特地在8xA100机器上训练了部分数据。整体效果非常不错~

如何使用

from transformers import AutoModelForCausalLM, AutoTokenizer


checkpoint = "yuanzhoulvpi/chinese_bloom_7b_chat"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"#  "output_dir/checkpoint-8260"#
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).half().cuda()

PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}

from typing import Optional
def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str:
    if input_str is None:
        return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction})
    else:
        return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str})


for i in range(5):
    print("*"*80)

    inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt")
    outputs = model.generate(inputs,num_beams=3,
                            max_new_tokens=512,
                            do_sample=False, 
                            top_k=10,
                            penalty_alpha=0.6,
                            temperature=0.8,
                            repetition_penalty=1.2)
    print(tokenizer.decode(outputs[0]))

效果

不管是写代码还是写文案,bloom-7b在中文领域有极大的潜力

  • example 1
  • example 2
  • example 3
  • example 4
  • example 5
Downloads last month
22
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.