|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
language: |
|
- zh |
|
--- |
|
# 体验链接 |
|
1. 🔗[http://101.68.79.42:7861/](http://101.68.79.42:7861/) |
|
|
|
## 🚀更新 |
|
| 模型链接 | 训练的数据量 | 模型版本 | 备注 | |
|
|------------------------------------------------------------------------------------------------------------------------------|-----------|------|------------------------| |
|
| [https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat](https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat) | 15w中文指令数据 | v1 | | |
|
| [https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v2](https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v2) | 150w条中文指令数据 | v2 | 目前已经测试过效果,相较于v1,效果有所提升 | |
|
| [https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v3](https://huggingface.co/yuanzhoulvpi/chinese_bloom_7b_chat_v3) | 420w条中文指令数据 | v3 | 目前效果还没测试,欢迎大家测试 | |
|
|
|
## 介绍 |
|
1. ✅ 对`bloom-7b`模型做了sft,本次版本为V2版本(使用了150w条有监督数据做sft),相较于V1版本,效果更好!!! |
|
2. 🚀 训练代码和推理代码全部分享,可以查看链接[https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom) |
|
|
|
|
|
## 如何使用 |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
checkpoint = "yuanzhoulvpi/chinese_bloom_7b_chat_v2"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"# "output_dir/checkpoint-8260"# |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint).half().cuda() |
|
|
|
PROMPT_DICT = { |
|
"prompt_input": ( |
|
"Below is an instruction that describes a task, paired with an input that provides further context. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:" |
|
), |
|
"prompt_no_input": ( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
"### Instruction:\n{instruction}\n\n### Response:" |
|
), |
|
} |
|
|
|
from typing import Optional |
|
def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str: |
|
if input_str is None: |
|
return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction}) |
|
else: |
|
return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str}) |
|
|
|
|
|
for i in range(5): |
|
print("*"*80) |
|
|
|
inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt") |
|
outputs = model.generate(inputs,num_beams=3, |
|
max_new_tokens=512, |
|
do_sample=False, |
|
top_k=10, |
|
penalty_alpha=0.6, |
|
temperature=0.8, |
|
repetition_penalty=1.2) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
|
|
|