|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is randomly initialized, using the config from [THUDM/chatglm3-6b-128k](https://huggingface.co/THUDM/chatglm3-6b-128k/blob/main/config.json) but with smaller size. |
|
Note the model is in float16. |
|
|
|
Codes: |
|
```python |
|
import transformers |
|
import torch |
|
import os |
|
from huggingface_hub import create_repo, upload_folder |
|
|
|
source_model_id = 'THUDM/chatglm3-6b-128k' |
|
tiny_random_name = 'chatglm3-tiny-random' |
|
save_path = f'/tmp/yujiepan/{tiny_random_name}' |
|
repo_id = f'yujiepan/{tiny_random_name}' |
|
|
|
config = transformers.AutoConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True) |
|
config.hidden_size = 4 |
|
config.ffn_hidden_size = 6 |
|
config.num_attention_heads = 4 |
|
config.kv_channels = 2 |
|
config.num_layers = 2 |
|
config.torch_dtype = torch.float16 |
|
|
|
model = transformers.AutoModelForCausalLM.from_config( |
|
config, trust_remote_code=True, torch_dtype=torch.float16) |
|
model = model.half() |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
source_model_id, trust_remote_code=True) |
|
|
|
# result = transformers.pipelines.pipeline( |
|
# 'text-generation', |
|
# model=model, tokenizer=tokenizer, |
|
# device=0, |
|
# max_new_tokens=16, |
|
# )('Hello') |
|
# print(result) |
|
model = model.cuda() |
|
response, history = model.chat(tokenizer, "Hi", history=[], max_length=32) |
|
print(response) |
|
|
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
os.system(f'ls -alh {save_path}') |
|
create_repo(repo_id, exist_ok=True) |
|
upload_folder(repo_id=repo_id, folder_path=save_path) |
|
``` |
|
|