Edit model card

This model is randomly initialized, using the config from microsoft/Phi-3-mini-128k-instruct but with smaller size. Note the model is in float16.

Codes:

import transformers
import torch
import os
from huggingface_hub import create_repo, upload_folder

source_model_id = 'microsoft/Phi-3-mini-128k-instruct'
save_path = '/tmp/yujiepan/phi-3-tiny-random'
repo_id = 'yujiepan/phi-3-tiny-random'

config = transformers.AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True)
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 4
config.rope_scaling['long_factor'] = [1.0299, 1.0499]
config.rope_scaling['short_factor'] = [1.05, 1.05]

model = transformers.AutoModelForCausalLM.from_config(
    config, trust_remote_code=True)
model = model.to(torch.float16)
model.save_pretrained(save_path)

tokenizer = transformers.AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

result = transformers.pipelines.pipeline(
    'text-generation',
    model=model.float(), tokenizer=tokenizer)('Hello')
print(result)

os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)

from transformers import AutoProcessor
AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True).push_to_hub(repo_id)
Downloads last month
591
Safetensors
Model size
1.03M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/phi-3-tiny-random