File size: 1,520 Bytes
34bf872 7244d2c 34bf872 7244d2c 34bf872 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
This model is randomly initialized, using the config from [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) but with smaller size.
Note the model is in float16.
Codes:
```python
import transformers
import torch
import os
from huggingface_hub import create_repo, upload_folder
source_model_id = 'microsoft/Phi-3-mini-128k-instruct'
save_path = '/tmp/yujiepan/phi-3-tiny-random'
repo_id = 'yujiepan/phi-3-tiny-random'
config = transformers.AutoConfig.from_pretrained(
source_model_id, trust_remote_code=True)
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 4
config.rope_scaling['long_factor'] = [1.0299, 1.0499]
config.rope_scaling['short_factor'] = [1.05, 1.05]
model = transformers.AutoModelForCausalLM.from_config(
config, trust_remote_code=True)
model = model.to(torch.float16)
model.save_pretrained(save_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
source_model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)
result = transformers.pipelines.pipeline(
'text-generation',
model=model.float(), tokenizer=tokenizer)('Hello')
print(result)
os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
``` |