Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
56 items
•
Updated
•
3
This pipeline is intended from debugging. It is adapted from stabilityai/stable-diffusion-3-medium-diffusers with smaller size and randomly initialized parameters.
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained("yujiepan/stable-diffusion-3-tiny-random", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(
"A cat holding a sign that says hello world",
negative_prompt="",
num_inference_steps=2,
guidance_scale=7.0,
).images[0]
image
import importlib
import torch
import transformers
import diffusers
import rich
def get_original_model_configs(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str):
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
model_configs = {}
for subfolder, import_strings in pipeline_config.items():
if subfolder.startswith("_"):
continue
module = importlib.import_module(".".join(import_strings[:-1]))
cls = getattr(module, import_strings[-1])
if issubclass(cls, transformers.PreTrainedModel):
config_class: transformers.PretrainedConfig = cls.config_class
config = config_class.from_pretrained(pipeline_id, subfolder=subfolder)
model_configs[subfolder] = config
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
config = cls.load_config(pipeline_id, subfolder=subfolder)
model_configs[subfolder] = config
return model_configs
def load_pipeline(pipeline_cls: type[diffusers.DiffusionPipeline], pipeline_id: str, model_configs: dict[str, dict]):
pipeline_config: dict[str, list[str]] = pipeline_cls.load_config(pipeline_id)
components = {}
for subfolder, import_strings in pipeline_config.items():
if subfolder.startswith("_"):
continue
module = importlib.import_module(".".join(import_strings[:-1]))
cls = getattr(module, import_strings[-1])
print(f"Loading:", ".".join(import_strings))
if issubclass(cls, transformers.PreTrainedModel):
config = model_configs[subfolder]
component = cls(config)
elif issubclass(cls, transformers.PreTrainedTokenizerBase):
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
elif issubclass(cls, diffusers.ModelMixin) and issubclass(cls, diffusers.ConfigMixin):
config = model_configs[subfolder]
component = cls.from_config(config)
elif issubclass(cls, diffusers.SchedulerMixin) and issubclass(cls, diffusers.ConfigMixin):
component = cls.from_pretrained(pipeline_id, subfolder=subfolder)
else:
raise (f"unknown {subfolder}: {import_strings}")
components[subfolder] = component
pipeline = pipeline_cls(**components)
return pipeline
def get_pipeline():
torch.manual_seed(42)
pipeline_id = "stabilityai/stable-diffusion-3-medium-diffusers"
pipeline_cls = diffusers.StableDiffusion3Pipeline
model_configs = get_original_model_configs(pipeline_cls, pipeline_id)
rich.print(model_configs)
HIDDEN_SIZE = 8
model_configs["text_encoder"].hidden_size = HIDDEN_SIZE
model_configs["text_encoder"].intermediate_size = HIDDEN_SIZE * 2
model_configs["text_encoder"].num_attention_heads = 2
model_configs["text_encoder"].num_hidden_layers = 2
model_configs["text_encoder"].projection_dim = HIDDEN_SIZE
model_configs["text_encoder_2"].hidden_size = HIDDEN_SIZE
model_configs["text_encoder_2"].intermediate_size = HIDDEN_SIZE * 2
model_configs["text_encoder_2"].num_attention_heads = 2
model_configs["text_encoder_2"].num_hidden_layers = 2
model_configs["text_encoder_2"].projection_dim = HIDDEN_SIZE
model_configs["text_encoder_3"].d_model = HIDDEN_SIZE
model_configs["text_encoder_3"].d_ff = HIDDEN_SIZE * 2
model_configs["text_encoder_3"].d_kv = HIDDEN_SIZE // 2
model_configs["text_encoder_3"].num_heads = 2
model_configs["text_encoder_3"].num_layers = 2
model_configs["transformer"]["num_layers"] = 2
model_configs["transformer"]["num_attention_heads"] = 2
model_configs["transformer"]["attention_head_dim"] = HIDDEN_SIZE // 2
model_configs["transformer"]["pooled_projection_dim"] = HIDDEN_SIZE * 2
model_configs["transformer"]["joint_attention_dim"] = HIDDEN_SIZE
model_configs["transformer"]["caption_projection_dim"] = HIDDEN_SIZE
model_configs["vae"]["layers_per_block"] = 1
model_configs["vae"]["block_out_channels"] = [HIDDEN_SIZE] * 4
model_configs["vae"]["norm_num_groups"] = 2
model_configs["vae"]["latent_channels"] = 16
pipeline = load_pipeline(pipeline_cls, pipeline_id, model_configs)
return pipeline
pipeline = get_pipeline()
image = pipeline(
"hello world",
negative_prompt="runtime error",
num_inference_steps=2,
guidance_scale=7.0,
).images[0]
pipeline = pipeline.to(torch.float16)
pipeline.save_pretrained("/tmp/stable-diffusion-3-tiny-random")
pipeline.push_to_hub("yujiepan/stable-diffusion-3-tiny-random")