YuLan-Mini-Before-Annealing / configuration_yulanmini.py
IvanHU's picture
Upload correct optimizer states
13226fe
raw
history blame
15.3 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" YuLanMinimodel configuration"""
import math
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
YULANMINI_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class YuLanMiniConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`YuLanMiniModel`]. It is used to instantiate an YuLanMini
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the YuLanMini-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the YuLanMinimodel. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`YuLanMiniModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. YuLanMini1 supports up to 2048 tokens,
YuLanMini2 up to 4096, CodeYuLanMiniup to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalYuLanMini/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import YuLanMiniModel, YuLanMiniConfig
>>> # Initializing a YuLanMini-7b style configuration
>>> configuration = YuLanMiniConfig()
>>> # Initializing a model from the YuLanMini-7b style configuration
>>> model = YuLanMiniModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "yulanmini"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=99000,
hidden_size=1920,
intermediate_size=4800,
num_hidden_layers=56,
num_attention_heads=30,
num_key_value_heads=6,
# 不常用变量
hidden_act="silu",
max_position_embeddings=4096,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None, # /home/u20140041/pretrain-mini/preprocess/modify_tokenizer/1731
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
rope_scaling=None,
attention_bias=True, # qwen
attention_dropout=0.0,
# 放缩embedding grad
shrink_alpha=1,
shrink_alpha2=1,
use_liger=False,
# 初始化
initializer_range=0.014434,
init_scale_o=10.582218,
model_reproduce="transformer",
# 下面是为了muparam设置的参数,需要保证:默认值是不使用任何muparam的部分
hidden_states_shrink=1,
dim_model_base=None,
dim_ffn_base_init=None, # 新版muparam没有使用了
dim_model_base_init=None,
dim_model_base_attn=None,
dim_model_base_lmh=None,
dim_model_base_logits=None,
dim_model_base_lr=None,
scale_emb=1,
# qk_layernorm
qk_layernorm=False,
layer_norm_eps=1e-6,
embedding_ln=False,
embedding_rmsln=False,
ln_scale=1.,
z_loss=0.0001,
# wesar
wesar_weights=True,
embed_tokens_alpha=1,
q_proj_alpha=1,
k_proj_alpha=1,
v_proj_alpha=1,
o_proj_alpha=1,
down_proj_alpha=1,
gate_up_proj_alpha=1,
input_layernorm_alpha=1,
post_attention_layernorm_alpha=1,
norm_alpha=1,
lm_head_alpha=1,
use_norm_alpha=True,
use_emb_alpha=False,
rms_type="llama",
num_steps_trained_before_this_epoch=0,
num_epochs_trained_before_this_epoch=0,
# 加速
gradient_checkpointing_step=7,
**kwargs,
):
# 训练states,每个epoch更新,epoch内部不会变。比如训练到第4轮数据,这两个的值都是第三轮最后一步的值(epochs=3, steps=xxx),只要是在第4轮,无论是多少步,都是第三轮的值,由update_trained_steps_and_epochs控制是否更新
self.num_steps_trained_before_this_epoch = num_steps_trained_before_this_epoch
self.num_epochs_trained_before_this_epoch = num_epochs_trained_before_this_epoch
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.shrink_alpha = shrink_alpha
self.use_liger = use_liger
self.init_scale_o = init_scale_o
self.hidden_states_shrink = 1 / math.sqrt(num_hidden_layers) if hidden_states_shrink == "muparam" else hidden_states_shrink
self.dim_model_base = dim_model_base if dim_model_base is not None else hidden_size
self.dim_model_base_init = dim_model_base_init
self.dim_model_base_attn = dim_model_base_attn if dim_model_base_attn is not None else (hidden_size // num_attention_heads) # 初始化为1则是使用1/H_dim
self.dim_model_base_lmh = dim_model_base_lmh if dim_model_base_lmh is not None else 1 # 初始化为1则是不放缩lm_head的init
self.scale_emb = scale_emb if scale_emb is not None else 1
self.model_reproduce=model_reproduce if model_reproduce is not None else "transformer"
self.dim_model_base_logits = dim_model_base_logits if dim_model_base_logits is not None else hidden_size
self.dim_model_base_lr = dim_model_base_lr if dim_model_base_lr is not None else hidden_size
self.qk_layernorm = qk_layernorm
self.layer_norm_eps = layer_norm_eps
self.embedding_ln = embedding_ln
self.embedding_rmsln = embedding_rmsln
self.ln_scale = ln_scale
self.z_loss = z_loss
if embedding_ln and embedding_rmsln:
raise ValueError("Only one of embedding_ln and embedding_rmsln should be True")
self.wesar_weights = wesar_weights
self.embed_tokens_alpha = embed_tokens_alpha
self.q_proj_alpha = q_proj_alpha
self.k_proj_alpha = k_proj_alpha
self.v_proj_alpha = v_proj_alpha
self.o_proj_alpha = o_proj_alpha
self.down_proj_alpha = down_proj_alpha
self.gate_up_proj_alpha = gate_up_proj_alpha
self.input_layernorm_alpha = input_layernorm_alpha
self.post_attention_layernorm_alpha = post_attention_layernorm_alpha
self.norm_alpha = norm_alpha
self.lm_head_alpha = lm_head_alpha
self.use_norm_alpha = use_norm_alpha
self.use_emb_alpha = use_emb_alpha
self.rms_type = rms_type
self.gradient_checkpointing_step = gradient_checkpointing_step
if self.dim_model_base != hidden_size or self.dim_model_base_init is not None or self.dim_model_base_attn != (hidden_size // num_attention_heads) or self.dim_model_base_lmh != 1:
if init_scale_o != 1:
raise ValueError("When using muparam, init_scale_o should be 1")
# multiplier
print("Attention放缩:", math.sqrt(self.dim_model_base_attn) / (hidden_size // num_attention_heads))
print("Residual链接处的Hidden States放缩:", hidden_states_shrink)
print("Logits放缩:", 1 / (hidden_size / self.dim_model_base))
# initializer
if dim_model_base_init is not None:
print("o_proj,down_proj初始化STD:", initializer_range / math.sqrt(2 * (hidden_size / dim_model_base_init) * num_hidden_layers))
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range / math.sqrt(self.hidden_size / self.dim_model_base_init))
else:
print("o_proj,down_proj初始化STD:", initializer_range / init_scale_o)
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range)
print("lm_head初始化STD:", initializer_range / math.sqrt(self.dim_model_base_lmh))
if not tie_word_embeddings and self.scale_emb != 1:
raise ValueError("When using scale_emb, tie_word_embeddings should be False")
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
try:
import flash_attn
self._attn_implementation = "flash_attention_2"
except:
pass
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")