|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" YuLanMinimodel configuration""" |
|
|
|
import math |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
YULANMINI_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class YuLanMiniConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`YuLanMiniModel`]. It is used to instantiate an YuLanMini |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the YuLanMini-7B. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the YuLanMinimodel. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`YuLanMiniModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. YuLanMini1 supports up to 2048 tokens, |
|
YuLanMini2 up to 4096, CodeYuLanMiniup to 16384. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
End of stream token id. |
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how |
|
these scaling strategies behave: |
|
https://www.reddit.com/r/LocalYuLanMini/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an |
|
experimental feature, subject to breaking API changes in future versions. |
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import YuLanMiniModel, YuLanMiniConfig |
|
|
|
>>> # Initializing a YuLanMini-7b style configuration |
|
>>> configuration = YuLanMiniConfig() |
|
|
|
>>> # Initializing a model from the YuLanMini-7b style configuration |
|
>>> model = YuLanMiniModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "yulanmini" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=99000, |
|
hidden_size=1920, |
|
intermediate_size=4800, |
|
num_hidden_layers=56, |
|
num_attention_heads=30, |
|
num_key_value_heads=6, |
|
|
|
|
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
use_sliding_window=False, |
|
sliding_window=4096, |
|
rope_scaling=None, |
|
attention_bias=True, |
|
attention_dropout=0.0, |
|
|
|
shrink_alpha=1, |
|
shrink_alpha2=1, |
|
use_liger=False, |
|
|
|
initializer_range=0.014434, |
|
init_scale_o=10.582218, |
|
model_reproduce="transformer", |
|
|
|
hidden_states_shrink=1, |
|
dim_model_base=None, |
|
dim_ffn_base_init=None, |
|
dim_model_base_init=None, |
|
dim_model_base_attn=None, |
|
dim_model_base_lmh=None, |
|
dim_model_base_logits=None, |
|
dim_model_base_lr=None, |
|
scale_emb=1, |
|
|
|
qk_layernorm=False, |
|
layer_norm_eps=1e-6, |
|
embedding_ln=False, |
|
embedding_rmsln=False, |
|
ln_scale=1., |
|
z_loss=0.0001, |
|
|
|
wesar_weights=True, |
|
embed_tokens_alpha=1, |
|
q_proj_alpha=1, |
|
k_proj_alpha=1, |
|
v_proj_alpha=1, |
|
o_proj_alpha=1, |
|
down_proj_alpha=1, |
|
gate_up_proj_alpha=1, |
|
input_layernorm_alpha=1, |
|
post_attention_layernorm_alpha=1, |
|
norm_alpha=1, |
|
lm_head_alpha=1, |
|
use_norm_alpha=True, |
|
use_emb_alpha=False, |
|
rms_type="llama", |
|
num_steps_trained_before_this_epoch=0, |
|
num_epochs_trained_before_this_epoch=0, |
|
|
|
gradient_checkpointing_step=7, |
|
**kwargs, |
|
): |
|
|
|
self.num_steps_trained_before_this_epoch = num_steps_trained_before_this_epoch |
|
self.num_epochs_trained_before_this_epoch = num_epochs_trained_before_this_epoch |
|
|
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.use_sliding_window = use_sliding_window |
|
self.sliding_window = sliding_window if use_sliding_window else None |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
self.shrink_alpha = shrink_alpha |
|
self.use_liger = use_liger |
|
self.init_scale_o = init_scale_o |
|
self.hidden_states_shrink = 1 / math.sqrt(num_hidden_layers) if hidden_states_shrink == "muparam" else hidden_states_shrink |
|
self.dim_model_base = dim_model_base if dim_model_base is not None else hidden_size |
|
self.dim_model_base_init = dim_model_base_init |
|
self.dim_model_base_attn = dim_model_base_attn if dim_model_base_attn is not None else (hidden_size // num_attention_heads) |
|
self.dim_model_base_lmh = dim_model_base_lmh if dim_model_base_lmh is not None else 1 |
|
self.scale_emb = scale_emb if scale_emb is not None else 1 |
|
self.model_reproduce=model_reproduce if model_reproduce is not None else "transformer" |
|
self.dim_model_base_logits = dim_model_base_logits if dim_model_base_logits is not None else hidden_size |
|
self.dim_model_base_lr = dim_model_base_lr if dim_model_base_lr is not None else hidden_size |
|
|
|
self.qk_layernorm = qk_layernorm |
|
self.layer_norm_eps = layer_norm_eps |
|
self.embedding_ln = embedding_ln |
|
self.embedding_rmsln = embedding_rmsln |
|
self.ln_scale = ln_scale |
|
self.z_loss = z_loss |
|
|
|
if embedding_ln and embedding_rmsln: |
|
raise ValueError("Only one of embedding_ln and embedding_rmsln should be True") |
|
|
|
self.wesar_weights = wesar_weights |
|
self.embed_tokens_alpha = embed_tokens_alpha |
|
self.q_proj_alpha = q_proj_alpha |
|
self.k_proj_alpha = k_proj_alpha |
|
self.v_proj_alpha = v_proj_alpha |
|
self.o_proj_alpha = o_proj_alpha |
|
self.down_proj_alpha = down_proj_alpha |
|
self.gate_up_proj_alpha = gate_up_proj_alpha |
|
self.input_layernorm_alpha = input_layernorm_alpha |
|
self.post_attention_layernorm_alpha = post_attention_layernorm_alpha |
|
self.norm_alpha = norm_alpha |
|
self.lm_head_alpha = lm_head_alpha |
|
self.use_norm_alpha = use_norm_alpha |
|
self.use_emb_alpha = use_emb_alpha |
|
self.rms_type = rms_type |
|
|
|
self.gradient_checkpointing_step = gradient_checkpointing_step |
|
|
|
if self.dim_model_base != hidden_size or self.dim_model_base_init is not None or self.dim_model_base_attn != (hidden_size // num_attention_heads) or self.dim_model_base_lmh != 1: |
|
if init_scale_o != 1: |
|
raise ValueError("When using muparam, init_scale_o should be 1") |
|
|
|
|
|
print("Attention放缩:", math.sqrt(self.dim_model_base_attn) / (hidden_size // num_attention_heads)) |
|
print("Residual链接处的Hidden States放缩:", hidden_states_shrink) |
|
print("Logits放缩:", 1 / (hidden_size / self.dim_model_base)) |
|
|
|
|
|
if dim_model_base_init is not None: |
|
print("o_proj,down_proj初始化STD:", initializer_range / math.sqrt(2 * (hidden_size / dim_model_base_init) * num_hidden_layers)) |
|
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range / math.sqrt(self.hidden_size / self.dim_model_base_init)) |
|
else: |
|
print("o_proj,down_proj初始化STD:", initializer_range / init_scale_o) |
|
print("gate_proj,up_proj,q_proj,k_proj,v_proj初始化STD:", initializer_range) |
|
print("lm_head初始化STD:", initializer_range / math.sqrt(self.dim_model_base_lmh)) |
|
|
|
if not tie_word_embeddings and self.scale_emb != 1: |
|
raise ValueError("When using scale_emb, tie_word_embeddings should be False") |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
try: |
|
import flash_attn |
|
self._attn_implementation = "flash_attention_2" |
|
except: |
|
pass |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") |
|
|