wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7926
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0468 1.0 113 2.0109 0.41
1.6902 2.0 226 1.6493 0.5
1.0179 3.0 339 1.4098 0.59
1.1239 4.0 452 1.1319 0.67
0.7065 5.0 565 0.9650 0.73
0.546 6.0 678 0.9210 0.75
0.535 7.0 791 0.7329 0.81
0.3793 8.0 904 0.5348 0.86
0.6647 9.0 1017 0.6605 0.84
0.3996 10.0 1130 0.7797 0.83
0.432 11.0 1243 0.7763 0.83
0.0538 12.0 1356 0.7716 0.84
0.0858 13.0 1469 0.7953 0.82
0.3906 14.0 1582 0.7821 0.84
0.2496 15.0 1695 0.9718 0.83
0.13 16.0 1808 0.7773 0.85
0.1103 17.0 1921 0.6670 0.88
0.1443 18.0 2034 0.8843 0.84
0.0083 19.0 2147 0.7977 0.84
0.0086 20.0 2260 0.7926 0.83

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yuval6967/wav2vec2-base-finetuned-gtzan

Finetunes
1 model

Dataset used to train yuval6967/wav2vec2-base-finetuned-gtzan

Space using yuval6967/wav2vec2-base-finetuned-gtzan 1

Evaluation results