import open3d as o3d | |
import numpy as np | |
def downsample_and_filter(pcd_file): | |
pcd = o3d.io.read_point_cloud(pcd_file, max_bound_div = 750, neighbor_num = 8) | |
point_num = len(pcd.points) | |
if (point_num > 10000000): | |
voxel_down_pcd = o3d.geometry.PointCloud.uniform_down_sample(pcd, int(point_num / 10000000)+1) | |
else: | |
voxel_down_pcd = pcd | |
max_bound = voxel_down_pcd.get_max_bound() | |
ball_radius = np.linalg.norm(max_bound) / max_bound_div | |
pcd_filter, _ = voxel_down_pcd.remove_radius_outlier(neighbor_num, ball_radius) | |
print('filtered size', len(pcd_filter.points), 'pre size:', len(pcd.points)) | |
o3d.io.write_point_cloud(pcd_file[:-4] + '_filtered.ply', pcd_filter) | |
if __name__ == "__main__": | |
import os | |
dir_path = './data/demo_pcd' | |
for pcd_file in os.listdir(dir_path): | |
#if 'jonathan' in pcd_file: set max_bound_div to 300 and neighbot_num to 8 | |
downsample_and_filter(os.path.join(dir_path, pcd_file)) | |