Edit model card

Whisper Medium MN with custom data - Zagi

This model is a fine-tuned version of openai/whisper-tiny on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0918
  • Wer: 10.8352

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.5144 0.15 500 0.3790 43.5855
0.3922 0.3 1000 0.2215 26.4686
0.2435 0.46 1500 0.1774 21.2074
0.2275 0.61 2000 0.1451 18.1786
0.1447 0.76 2500 0.1279 15.7240
0.2028 0.91 3000 0.1065 13.0327
0.1068 1.06 3500 0.1002 12.2796
0.087 1.21 4000 0.0918 10.8352

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
15
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zagibest/whisper-medium-custom-data

Finetuned
(1215)
this model

Evaluation results