zagibest's picture
Upload tokenizer
925a8b7 verified
metadata
language:
  - mn
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-tiny
model-index:
  - name: Whisper TINY MN - Zagi
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: mn
          split: test
          args: 'config: mn, split: test'
        metrics:
          - type: wer
            value: 72.00196592398427
            name: Wer

Whisper TINY MN - Zagi

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8723
  • Wer: 72.0020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4952 3.97 1000 0.8053 76.0266
0.2221 7.94 2000 0.7763 71.9201
0.0978 11.9 3000 0.8360 71.1118
0.059 15.87 4000 0.8723 72.0020

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2