metadata
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- generator
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: mistral_7b_cosine_lr
results: []
mistral_7b_cosine_lr
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.3810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8199 | 0.0366 | 10 | 0.6013 |
0.5795 | 0.0732 | 20 | 0.5157 |
0.5089 | 0.1098 | 30 | 0.4825 |
0.4742 | 0.1465 | 40 | 0.4628 |
0.468 | 0.1831 | 50 | 0.4502 |
0.4489 | 0.2197 | 60 | 0.4424 |
0.4471 | 0.2563 | 70 | 0.4378 |
0.4529 | 0.2929 | 80 | 0.4365 |
0.4382 | 0.3295 | 90 | 0.4289 |
0.4352 | 0.3661 | 100 | 0.4267 |
0.4331 | 0.4027 | 110 | 0.4214 |
0.4368 | 0.4394 | 120 | 0.4326 |
0.4244 | 0.4760 | 130 | 0.4188 |
0.4231 | 0.5126 | 140 | 0.4143 |
0.418 | 0.5492 | 150 | 0.4103 |
0.4118 | 0.5858 | 160 | 0.4066 |
0.4151 | 0.6224 | 170 | 0.4047 |
0.4093 | 0.6590 | 180 | 0.4020 |
0.4066 | 0.6957 | 190 | 0.4004 |
0.4072 | 0.7323 | 200 | 0.3970 |
0.4002 | 0.7689 | 210 | 0.3933 |
0.3968 | 0.8055 | 220 | 0.3919 |
0.3967 | 0.8421 | 230 | 0.3893 |
0.3901 | 0.8787 | 240 | 0.3870 |
0.3895 | 0.9153 | 250 | 0.3852 |
0.3929 | 0.9519 | 260 | 0.3823 |
0.3854 | 0.9886 | 270 | 0.3808 |
0.3524 | 1.0252 | 280 | 0.3833 |
0.332 | 1.0618 | 290 | 0.3821 |
0.3283 | 1.0984 | 300 | 0.3810 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0