SpanMarker with allenai/scibert_scivocab_uncased on my-data
This is a SpanMarker model that can be used for Named Entity Recognition. This SpanMarker model uses allenai/scibert_scivocab_uncased as the underlying encoder.
Model Details
Model Description
- Model Type: SpanMarker
- Encoder: allenai/scibert_scivocab_uncased
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Language: en
- License: cc-by-sa-4.0
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
Data | "an overall mitochondrial", "defect", "Depth time - series" |
Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
Method | "EFSA", "an approximation", "in vitro" |
Process | "translation", "intake", "a significant reduction of synthesis" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.6981 | 0.6732 | 0.6854 |
Data | 0.6269 | 0.6402 | 0.6335 |
Material | 0.8085 | 0.7562 | 0.7815 |
Method | 0.4211 | 0.4 | 0.4103 |
Process | 0.6891 | 0.6488 | 0.6683 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/scibert_scivocab_uncased-me")
# Run inference
entities = model.predict("In situ Peak Force Tapping AFM was employed for determining morphology and nano - mechanical properties of the surface layer .")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/scibert_scivocab_uncased-me")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span-marker-allenai/scibert_scivocab_uncased-me-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 3 | 25.6049 | 106 |
Entities per sentence | 0 | 5.2439 | 22 |
Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
2.0134 | 300 | 0.0476 | 0.7297 | 0.5821 | 0.6476 | 0.7880 |
4.0268 | 600 | 0.0532 | 0.7537 | 0.6775 | 0.7136 | 0.8281 |
6.0403 | 900 | 0.0655 | 0.7162 | 0.7080 | 0.7121 | 0.8357 |
8.0537 | 1200 | 0.0761 | 0.7143 | 0.7061 | 0.7102 | 0.8251 |
Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for zhang19991111/scibert-spanmarker-STEM-NER
Base model
allenai/scibert_scivocab_uncasedEvaluation results
- F1 on my-datatest set self-reported0.685
- Precision on my-datatest set self-reported0.698
- Recall on my-datatest set self-reported0.673