File size: 14,263 Bytes
6c60ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm

from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.registry import MODEL_REGISTRY
import torch.nn.functional as F
from .sr_model import SRModel


@MODEL_REGISTRY.register()
class CodeFormerModel(SRModel):
    def feed_data(self, data):
        self.gt = data['gt'].to(self.device)
        self.input = data['in'].to(self.device)
        self.b = self.gt.shape[0]

        if 'latent_gt' in data:
            self.idx_gt = data['latent_gt'].to(self.device)
            self.idx_gt = self.idx_gt.view(self.b, -1)
        else:
            self.idx_gt = None

    def init_training_settings(self):
        logger = get_root_logger()
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None:
            self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device)
            self.hq_vqgan_fix.eval()
            self.generate_idx_gt = True
            for param in self.hq_vqgan_fix.parameters():
                param.requires_grad = False
        else:
            self.generate_idx_gt = False

        self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True)
        self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0)
        self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True)
        self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5)
        self.fidelity_weight = train_opt.get('fidelity_weight', 1.0)
        self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8)


        self.net_g.train()
        # define network net_d
        if self.fidelity_weight > 0:
            self.net_d = build_network(self.opt['network_d'])
            self.net_d = self.model_to_device(self.net_d)
            self.print_network(self.net_d)

            # load pretrained models
            load_path = self.opt['path'].get('pretrain_network_d', None)
            if load_path is not None:
                self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True))

            self.net_d.train()

        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None

        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)


        self.fix_generator = train_opt.get('fix_generator', True)
        logger.info(f'fix_generator: {self.fix_generator}')

        self.net_g_start_iter = train_opt.get('net_g_start_iter', 0)
        self.net_d_iters = train_opt.get('net_d_iters', 1)
        self.net_d_start_iter = train_opt.get('net_d_start_iter', 0)

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

    def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max):
        recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0]
        g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]

        d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach()
        return d_weight

    def setup_optimizers(self):
        train_opt = self.opt['train']
        # optimizer g
        optim_params_g = []
        for k, v in self.net_g.named_parameters():
            if v.requires_grad:
                optim_params_g.append(v)
            else:
                logger = get_root_logger()
                logger.warning(f'Params {k} will not be optimized.')
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)
        # optimizer d
        if self.fidelity_weight > 0:
            optim_type = train_opt['optim_d'].pop('type')
            self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
            self.optimizers.append(self.optimizer_d)

    def gray_resize_for_identity(self, out, size=128):
        out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :])
        out_gray = out_gray.unsqueeze(1)
        out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False)
        return out_gray

    def optimize_parameters(self, current_iter):
        logger = get_root_logger()
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False

        self.optimizer_g.zero_grad()

        if self.generate_idx_gt:
            x = self.hq_vqgan_fix.encoder(self.gt)
            output, _, quant_stats = self.hq_vqgan_fix.quantize(x)
            min_encoding_indices = quant_stats['min_encoding_indices']
            self.idx_gt = min_encoding_indices.view(self.b, -1)

        if self.fidelity_weight > 0:
            self.output, logits, lq_feat = self.net_g(self.input, w=self.fidelity_weight, detach_16=True)
        else:
            logits, lq_feat = self.net_g(self.input, w=0, code_only=True)

        if self.hq_feat_loss:
            # quant_feats
            quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256])

        l_g_total = 0
        loss_dict = OrderedDict()
        if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter:
            # hq_feat_loss
            if self.hq_feat_loss: # codebook loss 
                l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight
                l_g_total += l_feat_encoder
                loss_dict['l_feat_encoder'] = l_feat_encoder

            # cross_entropy_loss
            if self.cross_entropy_loss:
                # b(hw)n -> bn(hw)
                cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight
                l_g_total += cross_entropy_loss
                loss_dict['cross_entropy_loss'] = cross_entropy_loss

            if self.fidelity_weight > 0: # when fidelity_weight == 0 don't need image-level loss
                # pixel loss
                if self.cri_pix:
                    l_g_pix = self.cri_pix(self.output, self.gt)
                    l_g_total += l_g_pix
                    loss_dict['l_g_pix'] = l_g_pix

                # perceptual loss
                if self.cri_perceptual:
                    l_g_percep = self.cri_perceptual(self.output, self.gt)
                    l_g_total += l_g_percep
                    loss_dict['l_g_percep'] = l_g_percep

                # gan loss
                if  current_iter > self.net_d_start_iter:
                    fake_g_pred = self.net_d(self.output)
                    l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
                    recon_loss = l_g_pix + l_g_percep
                    if not self.fix_generator:
                        last_layer = self.net_g.module.generator.blocks[-1].weight
                        d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
                    else:
                        largest_fuse_size = self.opt['network_g']['connect_list'][-1]
                        last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight
                        d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0)
                    
                    d_weight *= self.scale_adaptive_gan_weight # 0.8
                    loss_dict['d_weight'] = d_weight
                    l_g_total += d_weight * l_g_gan
                    loss_dict['l_g_gan'] = d_weight * l_g_gan

            l_g_total.backward()
            self.optimizer_g.step()

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

        # optimize net_d
        if  current_iter > self.net_d_start_iter and self.fidelity_weight > 0:
            for p in self.net_d.parameters():
                p.requires_grad = True

            self.optimizer_d.zero_grad()
            # real
            real_d_pred = self.net_d(self.gt)
            l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
            loss_dict['l_d_real'] = l_d_real
            loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
            l_d_real.backward()
            # fake
            fake_d_pred = self.net_d(self.output.detach())
            l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
            loss_dict['l_d_fake'] = l_d_fake
            loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
            l_d_fake.backward()

            self.optimizer_d.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)


    def test(self):
        with torch.no_grad():
            if hasattr(self, 'net_g_ema'):
                self.net_g_ema.eval()
                self.output, _, _ = self.net_g_ema(self.input, w=self.fidelity_weight)
            else:
                logger = get_root_logger()
                logger.warning('Do not have self.net_g_ema, use self.net_g.')
                self.net_g.eval()
                self.output, _, _ = self.net_g(self.input, w=self.fidelity_weight)
                self.net_g.train()


    def dist_validation(self, dataloader, current_iter, tb_logger, save_img):
        if self.opt['rank'] == 0:
            self.nondist_validation(dataloader, current_iter, tb_logger, save_img)


    def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        if with_metrics:
            self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}
        pbar = tqdm(total=len(dataloader), unit='image')

        for idx, val_data in enumerate(dataloader):
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
            self.feed_data(val_data)
            self.test()

            visuals = self.get_current_visuals()
            sr_img = tensor2img([visuals['result']])
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']])
                del self.gt

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                if self.opt['is_train']:
                    save_img_path = osp.join(self.opt['path']['visualization'], img_name,
                                             f'{img_name}_{current_iter}.png')
                else:
                    if self.opt['val']['suffix']:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["val"]["suffix"]}.png')
                    else:
                        save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,
                                                 f'{img_name}_{self.opt["name"]}.png')
                imwrite(sr_img, save_img_path)

            if with_metrics:
                # calculate metrics
                for name, opt_ in self.opt['val']['metrics'].items():
                    metric_data = dict(img1=sr_img, img2=gt_img)
                    self.metric_results[name] += calculate_metric(metric_data, opt_)
            pbar.update(1)
            pbar.set_description(f'Test {img_name}')
        pbar.close()

        if with_metrics:
            for metric in self.metric_results.keys():
                self.metric_results[metric] /= (idx + 1)

            self._log_validation_metric_values(current_iter, dataset_name, tb_logger)


    def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):
        log_str = f'Validation {dataset_name}\n'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}\n'
        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)


    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['gt'] = self.gt.detach().cpu()
        out_dict['result'] = self.output.detach().cpu()
        return out_dict


    def save(self, epoch, current_iter):
        if self.ema_decay > 0:
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        if self.fidelity_weight > 0:
            self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)