File size: 28,838 Bytes
6c60ccc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
// modify from
// https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda.c
#include <torch/extension.h>
#include <ATen/DeviceGuard.h>
#include <cmath>
#include <vector>
void deformable_im2col(const at::Tensor data_im, const at::Tensor data_offset,
const int channels, const int height, const int width,
const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int parallel_imgs, const int deformable_group,
at::Tensor data_col);
void deformable_col2im(const at::Tensor data_col, const at::Tensor data_offset,
const int channels, const int height, const int width,
const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int parallel_imgs, const int deformable_group,
at::Tensor grad_im);
void deformable_col2im_coord(
const at::Tensor data_col, const at::Tensor data_im,
const at::Tensor data_offset, const int channels, const int height,
const int width, const int ksize_h, const int ksize_w, const int pad_h,
const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int parallel_imgs,
const int deformable_group, at::Tensor grad_offset);
void modulated_deformable_im2col_cuda(
const at::Tensor data_im, const at::Tensor data_offset,
const at::Tensor data_mask, const int batch_size, const int channels,
const int height_im, const int width_im, const int height_col,
const int width_col, const int kernel_h, const int kenerl_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int deformable_group,
at::Tensor data_col);
void modulated_deformable_col2im_cuda(
const at::Tensor data_col, const at::Tensor data_offset,
const at::Tensor data_mask, const int batch_size, const int channels,
const int height_im, const int width_im, const int height_col,
const int width_col, const int kernel_h, const int kenerl_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w, const int deformable_group,
at::Tensor grad_im);
void modulated_deformable_col2im_coord_cuda(
const at::Tensor data_col, const at::Tensor data_im,
const at::Tensor data_offset, const at::Tensor data_mask,
const int batch_size, const int channels, const int height_im,
const int width_im, const int height_col, const int width_col,
const int kernel_h, const int kenerl_w, const int pad_h, const int pad_w,
const int stride_h, const int stride_w, const int dilation_h,
const int dilation_w, const int deformable_group, at::Tensor grad_offset,
at::Tensor grad_mask);
void shape_check(at::Tensor input, at::Tensor offset, at::Tensor *gradOutput,
at::Tensor weight, int kH, int kW, int dH, int dW, int padH,
int padW, int dilationH, int dilationW, int group,
int deformable_group) {
TORCH_CHECK(weight.ndimension() == 4,
"4D weight tensor (nOutputPlane,nInputPlane,kH,kW) expected, "
"but got: %s",
weight.ndimension());
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
TORCH_CHECK(kW > 0 && kH > 0,
"kernel size should be greater than zero, but got kH: %d kW: %d", kH,
kW);
TORCH_CHECK((weight.size(2) == kH && weight.size(3) == kW),
"kernel size should be consistent with weight, ",
"but got kH: %d kW: %d weight.size(2): %d, weight.size(3): %d", kH,
kW, weight.size(2), weight.size(3));
TORCH_CHECK(dW > 0 && dH > 0,
"stride should be greater than zero, but got dH: %d dW: %d", dH, dW);
TORCH_CHECK(
dilationW > 0 && dilationH > 0,
"dilation should be greater than 0, but got dilationH: %d dilationW: %d",
dilationH, dilationW);
int ndim = input.ndimension();
int dimf = 0;
int dimh = 1;
int dimw = 2;
if (ndim == 4) {
dimf++;
dimh++;
dimw++;
}
TORCH_CHECK(ndim == 3 || ndim == 4, "3D or 4D input tensor expected but got: %s",
ndim);
long nInputPlane = weight.size(1) * group;
long inputHeight = input.size(dimh);
long inputWidth = input.size(dimw);
long nOutputPlane = weight.size(0);
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
TORCH_CHECK(nInputPlane % deformable_group == 0,
"input channels must divide deformable group size");
if (outputWidth < 1 || outputHeight < 1)
AT_ERROR(
"Given input size: (%ld x %ld x %ld). "
"Calculated output size: (%ld x %ld x %ld). Output size is too small",
nInputPlane, inputHeight, inputWidth, nOutputPlane, outputHeight,
outputWidth);
TORCH_CHECK(input.size(1) == nInputPlane,
"invalid number of input planes, expected: %d, but got: %d",
nInputPlane, input.size(1));
TORCH_CHECK((inputHeight >= kH && inputWidth >= kW),
"input image is smaller than kernel");
TORCH_CHECK((offset.size(2) == outputHeight && offset.size(3) == outputWidth),
"invalid spatial size of offset, expected height: %d width: %d, but "
"got height: %d width: %d",
outputHeight, outputWidth, offset.size(2), offset.size(3));
TORCH_CHECK((offset.size(1) == deformable_group * 2 * kH * kW),
"invalid number of channels of offset");
if (gradOutput != NULL) {
TORCH_CHECK(gradOutput->size(dimf) == nOutputPlane,
"invalid number of gradOutput planes, expected: %d, but got: %d",
nOutputPlane, gradOutput->size(dimf));
TORCH_CHECK((gradOutput->size(dimh) == outputHeight &&
gradOutput->size(dimw) == outputWidth),
"invalid size of gradOutput, expected height: %d width: %d , but "
"got height: %d width: %d",
outputHeight, outputWidth, gradOutput->size(dimh),
gradOutput->size(dimw));
}
}
int deform_conv_forward_cuda(at::Tensor input, at::Tensor weight,
at::Tensor offset, at::Tensor output,
at::Tensor columns, at::Tensor ones, int kW,
int kH, int dW, int dH, int padW, int padH,
int dilationW, int dilationH, int group,
int deformable_group, int im2col_step) {
// todo: resize columns to include im2col: done
// todo: add im2col_step as input
// todo: add new output buffer and transpose it to output (or directly
// transpose output) todo: possibly change data indexing because of
// parallel_imgs
shape_check(input, offset, NULL, weight, kH, kW, dH, dW, padH, padW,
dilationH, dilationW, group, deformable_group);
at::DeviceGuard guard(input.device());
input = input.contiguous();
offset = offset.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input.unsqueeze_(0);
offset.unsqueeze_(0);
}
// todo: assert batchsize dividable by im2col_step
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
output = output.view({batchSize / im2col_step, im2col_step, nOutputPlane,
outputHeight, outputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < outputHeight * outputWidth) {
ones = at::ones({outputHeight, outputWidth}, input.options());
}
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
at::Tensor output_buffer =
at::zeros({batchSize / im2col_step, nOutputPlane,
im2col_step * outputHeight, outputWidth},
output.options());
output_buffer = output_buffer.view(
{output_buffer.size(0), group, output_buffer.size(1) / group,
output_buffer.size(2), output_buffer.size(3)});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
for (int g = 0; g < group; g++) {
output_buffer[elt][g] = output_buffer[elt][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output_buffer[elt][g]);
}
}
output_buffer = output_buffer.view(
{output_buffer.size(0), output_buffer.size(1) * output_buffer.size(2),
output_buffer.size(3), output_buffer.size(4)});
output_buffer = output_buffer.view({batchSize / im2col_step, nOutputPlane,
im2col_step, outputHeight, outputWidth});
output_buffer.transpose_(1, 2);
output.copy_(output_buffer);
output = output.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
output = output.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_input_cuda(at::Tensor input, at::Tensor offset,
at::Tensor gradOutput, at::Tensor gradInput,
at::Tensor gradOffset, at::Tensor weight,
at::Tensor columns, int kW, int kH, int dW,
int dH, int padW, int padH, int dilationW,
int dilationH, int group,
int deformable_group, int im2col_step) {
shape_check(input, offset, &gradOutput, weight, kH, kW, dH, dW, padH, padW,
dilationH, dilationW, group, deformable_group);
at::DeviceGuard guard(input.device());
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
weight = weight.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view({1, input.size(0), input.size(1), input.size(2)});
offset = offset.view({1, offset.size(0), offset.size(1), offset.size(2)});
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = weight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), 3, "invalid batch size of offset");
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
// change order of grad output
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
nOutputPlane, outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
gradInput = gradInput.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
gradOffset = gradOffset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight,
outputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
// divide into groups
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
gradOutput = gradOutput.view(
{gradOutput.size(0), group, gradOutput.size(1) / group,
gradOutput.size(2), gradOutput.size(3), gradOutput.size(4)});
for (int g = 0; g < group; g++) {
columns[g] = columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
gradOutput[elt][g].flatten(1), 0.0f, 1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradOutput = gradOutput.view(
{gradOutput.size(0), gradOutput.size(1) * gradOutput.size(2),
gradOutput.size(3), gradOutput.size(4), gradOutput.size(5)});
deformable_col2im_coord(columns, input[elt], offset[elt], nInputPlane,
inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
dilationH, dilationW, im2col_step, deformable_group,
gradOffset[elt]);
deformable_col2im(columns, offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, gradInput[elt]);
}
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
gradInput = gradInput.view({batchSize, nInputPlane, inputHeight, inputWidth});
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
gradOffset = gradOffset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
gradInput = gradInput.view({nInputPlane, inputHeight, inputWidth});
offset = offset.view({offset.size(1), offset.size(2), offset.size(3)});
gradOffset =
gradOffset.view({offset.size(1), offset.size(2), offset.size(3)});
}
return 1;
}
int deform_conv_backward_parameters_cuda(
at::Tensor input, at::Tensor offset, at::Tensor gradOutput,
at::Tensor gradWeight, // at::Tensor gradBias,
at::Tensor columns, at::Tensor ones, int kW, int kH, int dW, int dH,
int padW, int padH, int dilationW, int dilationH, int group,
int deformable_group, float scale, int im2col_step) {
// todo: transpose and reshape outGrad
// todo: reshape columns
// todo: add im2col_step as input
shape_check(input, offset, &gradOutput, gradWeight, kH, kW, dH, dW, padH,
padW, dilationH, dilationW, group, deformable_group);
at::DeviceGuard guard(input.device());
input = input.contiguous();
offset = offset.contiguous();
gradOutput = gradOutput.contiguous();
int batch = 1;
if (input.ndimension() == 3) {
// Force batch
batch = 0;
input = input.view(
at::IntList({1, input.size(0), input.size(1), input.size(2)}));
gradOutput = gradOutput.view(
{1, gradOutput.size(0), gradOutput.size(1), gradOutput.size(2)});
}
long batchSize = input.size(0);
long nInputPlane = input.size(1);
long inputHeight = input.size(2);
long inputWidth = input.size(3);
long nOutputPlane = gradWeight.size(0);
long outputWidth =
(inputWidth + 2 * padW - (dilationW * (kW - 1) + 1)) / dW + 1;
long outputHeight =
(inputHeight + 2 * padH - (dilationH * (kH - 1) + 1)) / dH + 1;
TORCH_CHECK((offset.size(0) == batchSize), "invalid batch size of offset");
columns = at::zeros(
{nInputPlane * kW * kH, im2col_step * outputHeight * outputWidth},
input.options());
gradOutput = gradOutput.view({batchSize / im2col_step, im2col_step,
nOutputPlane, outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
at::Tensor gradOutputBuffer = at::zeros_like(gradOutput);
gradOutputBuffer =
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane, im2col_step,
outputHeight, outputWidth});
gradOutputBuffer.copy_(gradOutput);
gradOutputBuffer =
gradOutputBuffer.view({batchSize / im2col_step, nOutputPlane,
im2col_step * outputHeight, outputWidth});
gradOutput.transpose_(1, 2);
gradOutput =
gradOutput.view({batchSize, nOutputPlane, outputHeight, outputWidth});
input = input.view({batchSize / im2col_step, im2col_step, nInputPlane,
inputHeight, inputWidth});
offset =
offset.view({batchSize / im2col_step, im2col_step,
deformable_group * 2 * kH * kW, outputHeight, outputWidth});
for (int elt = 0; elt < batchSize / im2col_step; elt++) {
deformable_im2col(input[elt], offset[elt], nInputPlane, inputHeight,
inputWidth, kH, kW, padH, padW, dH, dW, dilationH,
dilationW, im2col_step, deformable_group, columns);
// divide into group
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0), group, gradOutputBuffer.size(1) / group,
gradOutputBuffer.size(2), gradOutputBuffer.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
gradWeight =
gradWeight.view({group, gradWeight.size(0) / group, gradWeight.size(1),
gradWeight.size(2), gradWeight.size(3)});
for (int g = 0; g < group; g++) {
gradWeight[g] = gradWeight[g]
.flatten(1)
.addmm_(gradOutputBuffer[elt][g].flatten(1),
columns[g].transpose(1, 0), 1.0, scale)
.view_as(gradWeight[g]);
}
gradOutputBuffer = gradOutputBuffer.view(
{gradOutputBuffer.size(0),
gradOutputBuffer.size(1) * gradOutputBuffer.size(2),
gradOutputBuffer.size(3), gradOutputBuffer.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
gradWeight = gradWeight.view({gradWeight.size(0) * gradWeight.size(1),
gradWeight.size(2), gradWeight.size(3),
gradWeight.size(4)});
}
input = input.view({batchSize, nInputPlane, inputHeight, inputWidth});
offset = offset.view(
{batchSize, deformable_group * 2 * kH * kW, outputHeight, outputWidth});
if (batch == 0) {
gradOutput = gradOutput.view({nOutputPlane, outputHeight, outputWidth});
input = input.view({nInputPlane, inputHeight, inputWidth});
}
return 1;
}
void modulated_deform_conv_cuda_forward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
const int pad_h, const int pad_w, const int dilation_h,
const int dilation_w, const int group, const int deformable_group,
const bool with_bias) {
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device());
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
// resize output
output = output.view({batch, channels_out, height_out, width_out}).zero_();
// resize temporary columns
columns =
at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
input.options());
output = output.view({output.size(0), group, output.size(1) / group,
output.size(2), output.size(3)});
for (int b = 0; b < batch; b++) {
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
// divide into group
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
for (int g = 0; g < group; g++) {
output[b][g] = output[b][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output[b][g]);
}
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
output = output.view({output.size(0), output.size(1) * output.size(2),
output.size(3), output.size(4)});
if (with_bias) {
output += bias.view({1, bias.size(0), 1, 1});
}
}
void modulated_deform_conv_cuda_backward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor columns,
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
const bool with_bias) {
TORCH_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
TORCH_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
at::DeviceGuard guard(input.device());
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.options());
}
grad_input = grad_input.view({batch, channels, height, width});
columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
input.options());
grad_output =
grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
grad_output.size(2), grad_output.size(3)});
for (int b = 0; b < batch; b++) {
// divide int group
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
for (int g = 0; g < group; g++) {
columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
grad_output[b][g].flatten(1), 0.0f, 1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cuda(
columns, input[b], offset[b], mask[b], 1, channels, height, width,
height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
grad_mask[b]);
// gradient w.r.t. input data
modulated_deformable_col2im_cuda(
columns, offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, grad_input[b]);
// gradient w.r.t. weight, dWeight should accumulate across the batch and
// group
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
grad_weight.size(1), grad_weight.size(2),
grad_weight.size(3)});
if (with_bias)
grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
for (int g = 0; g < group; g++) {
grad_weight[g] =
grad_weight[g]
.flatten(1)
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
.view_as(grad_weight[g]);
if (with_bias) {
grad_bias[g] =
grad_bias[g]
.view({-1, 1})
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
.view(-1);
}
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2), grad_weight.size(3),
grad_weight.size(4)});
if (with_bias)
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
}
grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
grad_output.size(2), grad_output.size(3),
grad_output.size(4)});
}
|