|
import os |
|
import cv2 |
|
import argparse |
|
import glob |
|
import torch |
|
from torchvision.transforms.functional import normalize |
|
from basicsr.utils import imwrite, img2tensor, tensor2img |
|
from basicsr.utils.download_util import load_file_from_url |
|
from basicsr.utils.misc import get_device |
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
pretrain_model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer_colorization.pth' |
|
|
|
if __name__ == '__main__': |
|
|
|
device = get_device() |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-i', '--input_path', type=str, default='./inputs/gray_faces', |
|
help='Input image or folder. Default: inputs/gray_faces') |
|
parser.add_argument('-o', '--output_path', type=str, default=None, |
|
help='Output folder. Default: results/<input_name>') |
|
parser.add_argument('--suffix', type=str, default=None, |
|
help='Suffix of the restored faces. Default: None') |
|
args = parser.parse_args() |
|
|
|
|
|
print('[NOTE] The input face images should be aligned and cropped to a resolution of 512x512.') |
|
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): |
|
input_img_list = [args.input_path] |
|
result_root = f'results/test_colorization_img' |
|
else: |
|
if args.input_path.endswith('/'): |
|
args.input_path = args.input_path[:-1] |
|
|
|
input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]'))) |
|
result_root = f'results/{os.path.basename(args.input_path)}' |
|
|
|
if not args.output_path is None: |
|
result_root = args.output_path |
|
|
|
test_img_num = len(input_img_list) |
|
|
|
|
|
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, |
|
connect_list=['32', '64', '128']).to(device) |
|
|
|
|
|
ckpt_path = load_file_from_url(url=pretrain_model_url, |
|
model_dir='weights/CodeFormer', progress=True, file_name=None) |
|
checkpoint = torch.load(ckpt_path)['params_ema'] |
|
net.load_state_dict(checkpoint) |
|
net.eval() |
|
|
|
|
|
for i, img_path in enumerate(input_img_list): |
|
img_name = os.path.basename(img_path) |
|
basename, ext = os.path.splitext(img_name) |
|
print(f'[{i+1}/{test_img_num}] Processing: {img_name}') |
|
input_face = cv2.imread(img_path) |
|
assert input_face.shape[:2] == (512, 512), 'Input resolution must be 512x512 for colorization.' |
|
|
|
input_face = img2tensor(input_face / 255., bgr2rgb=True, float32=True) |
|
normalize(input_face, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
input_face = input_face.unsqueeze(0).to(device) |
|
try: |
|
with torch.no_grad(): |
|
|
|
output_face = net(input_face, w=0, adain=True)[0] |
|
save_face = tensor2img(output_face, rgb2bgr=True, min_max=(-1, 1)) |
|
del output_face |
|
torch.cuda.empty_cache() |
|
except Exception as error: |
|
print(f'\tFailed inference for CodeFormer: {error}') |
|
save_face = tensor2img(input_face, rgb2bgr=True, min_max=(-1, 1)) |
|
|
|
save_face = save_face.astype('uint8') |
|
|
|
|
|
if args.suffix is not None: |
|
basename = f'{basename}_{args.suffix}' |
|
save_restore_path = os.path.join(result_root, f'{basename}.png') |
|
imwrite(save_face, save_restore_path) |
|
|
|
print(f'\nAll results are saved in {result_root}') |
|
|
|
|