|
import cv2 |
|
import math |
|
import random |
|
import numpy as np |
|
import os.path as osp |
|
from scipy.io import loadmat |
|
from PIL import Image |
|
import torch |
|
import torch.utils.data as data |
|
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, |
|
adjust_hue, adjust_saturation, normalize) |
|
from basicsr.data import gaussian_kernels as gaussian_kernels |
|
from basicsr.data.transforms import augment |
|
from basicsr.data.data_util import paths_from_folder, brush_stroke_mask, random_ff_mask |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
@DATASET_REGISTRY.register() |
|
class FFHQBlindDataset(data.Dataset): |
|
|
|
def __init__(self, opt): |
|
super(FFHQBlindDataset, self).__init__() |
|
logger = get_root_logger() |
|
self.opt = opt |
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
|
|
self.gt_folder = opt['dataroot_gt'] |
|
self.gt_size = opt.get('gt_size', 512) |
|
self.in_size = opt.get('in_size', 512) |
|
assert self.gt_size >= self.in_size, 'Wrong setting.' |
|
|
|
self.mean = opt.get('mean', [0.5, 0.5, 0.5]) |
|
self.std = opt.get('std', [0.5, 0.5, 0.5]) |
|
|
|
self.component_path = opt.get('component_path', None) |
|
self.latent_gt_path = opt.get('latent_gt_path', None) |
|
|
|
if self.component_path is not None: |
|
self.crop_components = True |
|
self.components_dict = torch.load(self.component_path) |
|
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1.4) |
|
self.nose_enlarge_ratio = opt.get('nose_enlarge_ratio', 1.1) |
|
self.mouth_enlarge_ratio = opt.get('mouth_enlarge_ratio', 1.3) |
|
else: |
|
self.crop_components = False |
|
|
|
if self.latent_gt_path is not None: |
|
self.load_latent_gt = True |
|
self.latent_gt_dict = torch.load(self.latent_gt_path) |
|
else: |
|
self.load_latent_gt = False |
|
|
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.io_backend_opt['db_paths'] = self.gt_folder |
|
if not self.gt_folder.endswith('.lmdb'): |
|
raise ValueError("'dataroot_gt' should end with '.lmdb', "f'but received {self.gt_folder}') |
|
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: |
|
self.paths = [line.split('.')[0] for line in fin] |
|
else: |
|
self.paths = paths_from_folder(self.gt_folder) |
|
|
|
|
|
self.gen_inpaint_mask = opt.get('gen_inpaint_mask', False) |
|
if self.gen_inpaint_mask: |
|
logger.info(f'generate mask ...') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.use_corrupt = opt.get('use_corrupt', True) |
|
self.use_motion_kernel = False |
|
|
|
|
|
if self.use_motion_kernel: |
|
self.motion_kernel_prob = opt.get('motion_kernel_prob', 0.001) |
|
motion_kernel_path = opt.get('motion_kernel_path', 'basicsr/data/motion-blur-kernels-32.pth') |
|
self.motion_kernels = torch.load(motion_kernel_path) |
|
|
|
if self.use_corrupt and not self.gen_inpaint_mask: |
|
|
|
self.blur_kernel_size = opt['blur_kernel_size'] |
|
self.blur_sigma = opt['blur_sigma'] |
|
self.kernel_list = opt['kernel_list'] |
|
self.kernel_prob = opt['kernel_prob'] |
|
self.downsample_range = opt['downsample_range'] |
|
self.noise_range = opt['noise_range'] |
|
self.jpeg_range = opt['jpeg_range'] |
|
|
|
logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]') |
|
logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]') |
|
logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]') |
|
logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]') |
|
|
|
|
|
self.color_jitter_prob = opt.get('color_jitter_prob', None) |
|
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob', None) |
|
self.color_jitter_shift = opt.get('color_jitter_shift', 20) |
|
if self.color_jitter_prob is not None: |
|
logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}') |
|
|
|
|
|
self.gray_prob = opt.get('gray_prob', 0.0) |
|
if self.gray_prob is not None: |
|
logger.info(f'Use random gray. Prob: {self.gray_prob}') |
|
self.color_jitter_shift /= 255. |
|
|
|
@staticmethod |
|
def color_jitter(img, shift): |
|
"""jitter color: randomly jitter the RGB values, in numpy formats""" |
|
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32) |
|
img = img + jitter_val |
|
img = np.clip(img, 0, 1) |
|
return img |
|
|
|
@staticmethod |
|
def color_jitter_pt(img, brightness, contrast, saturation, hue): |
|
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats""" |
|
fn_idx = torch.randperm(4) |
|
for fn_id in fn_idx: |
|
if fn_id == 0 and brightness is not None: |
|
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() |
|
img = adjust_brightness(img, brightness_factor) |
|
|
|
if fn_id == 1 and contrast is not None: |
|
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() |
|
img = adjust_contrast(img, contrast_factor) |
|
|
|
if fn_id == 2 and saturation is not None: |
|
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() |
|
img = adjust_saturation(img, saturation_factor) |
|
|
|
if fn_id == 3 and hue is not None: |
|
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() |
|
img = adjust_hue(img, hue_factor) |
|
return img |
|
|
|
|
|
def get_component_locations(self, name, status): |
|
components_bbox = self.components_dict[name] |
|
if status[0]: |
|
|
|
tmp = components_bbox['left_eye'] |
|
components_bbox['left_eye'] = components_bbox['right_eye'] |
|
components_bbox['right_eye'] = tmp |
|
|
|
components_bbox['left_eye'][0] = self.gt_size - components_bbox['left_eye'][0] |
|
components_bbox['right_eye'][0] = self.gt_size - components_bbox['right_eye'][0] |
|
components_bbox['nose'][0] = self.gt_size - components_bbox['nose'][0] |
|
components_bbox['mouth'][0] = self.gt_size - components_bbox['mouth'][0] |
|
|
|
locations_gt = {} |
|
locations_in = {} |
|
for part in ['left_eye', 'right_eye', 'nose', 'mouth']: |
|
mean = components_bbox[part][0:2] |
|
half_len = components_bbox[part][2] |
|
if 'eye' in part: |
|
half_len *= self.eye_enlarge_ratio |
|
elif part == 'nose': |
|
half_len *= self.nose_enlarge_ratio |
|
elif part == 'mouth': |
|
half_len *= self.mouth_enlarge_ratio |
|
loc = np.hstack((mean - half_len + 1, mean + half_len)) |
|
loc = torch.from_numpy(loc).float() |
|
locations_gt[part] = loc |
|
loc_in = loc/(self.gt_size//self.in_size) |
|
locations_in[part] = loc_in |
|
return locations_gt, locations_in |
|
|
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
|
|
gt_path = self.paths[index] |
|
name = osp.basename(gt_path)[:-4] |
|
img_bytes = self.file_client.get(gt_path) |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True) |
|
|
|
if self.load_latent_gt: |
|
if status[0]: |
|
latent_gt = self.latent_gt_dict['hflip'][name] |
|
else: |
|
latent_gt = self.latent_gt_dict['orig'][name] |
|
|
|
if self.crop_components: |
|
locations_gt, locations_in = self.get_component_locations(name, status) |
|
|
|
|
|
img_in = img_gt |
|
if self.use_corrupt and not self.gen_inpaint_mask: |
|
|
|
if self.use_motion_kernel and random.random() < self.motion_kernel_prob: |
|
m_i = random.randint(0,31) |
|
k = self.motion_kernels[f'{m_i:02d}'] |
|
img_in = cv2.filter2D(img_in,-1,k) |
|
|
|
|
|
kernel = gaussian_kernels.random_mixed_kernels( |
|
self.kernel_list, |
|
self.kernel_prob, |
|
self.blur_kernel_size, |
|
self.blur_sigma, |
|
self.blur_sigma, |
|
[-math.pi, math.pi], |
|
noise_range=None) |
|
img_in = cv2.filter2D(img_in, -1, kernel) |
|
|
|
|
|
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) |
|
img_in = cv2.resize(img_in, (int(self.gt_size // scale), int(self.gt_size // scale)), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
if self.noise_range is not None: |
|
noise_sigma = np.random.uniform(self.noise_range[0] / 255., self.noise_range[1] / 255.) |
|
noise = np.float32(np.random.randn(*(img_in.shape))) * noise_sigma |
|
img_in = img_in + noise |
|
img_in = np.clip(img_in, 0, 1) |
|
|
|
|
|
if self.jpeg_range is not None: |
|
jpeg_p = np.random.uniform(self.jpeg_range[0], self.jpeg_range[1]) |
|
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), jpeg_p] |
|
_, encimg = cv2.imencode('.jpg', img_in * 255., encode_param) |
|
img_in = np.float32(cv2.imdecode(encimg, 1)) / 255. |
|
|
|
|
|
img_in = cv2.resize(img_in, (self.in_size, self.in_size), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.gen_inpaint_mask: |
|
img_in = (img_in*255).astype('uint8') |
|
img_in = brush_stroke_mask(Image.fromarray(img_in)) |
|
img_in = np.array(img_in) / 255. |
|
|
|
|
|
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob): |
|
img_in = self.color_jitter(img_in, self.color_jitter_shift) |
|
|
|
if self.gray_prob and np.random.uniform() < self.gray_prob: |
|
img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY) |
|
img_in = np.tile(img_in[:, :, None], [1, 1, 3]) |
|
|
|
|
|
img_in, img_gt = img2tensor([img_in, img_gt], bgr2rgb=True, float32=True) |
|
|
|
|
|
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob): |
|
brightness = self.opt.get('brightness', (0.5, 1.5)) |
|
contrast = self.opt.get('contrast', (0.5, 1.5)) |
|
saturation = self.opt.get('saturation', (0, 1.5)) |
|
hue = self.opt.get('hue', (-0.1, 0.1)) |
|
img_in = self.color_jitter_pt(img_in, brightness, contrast, saturation, hue) |
|
|
|
|
|
img_in = np.clip((img_in * 255.0).round(), 0, 255) / 255. |
|
|
|
|
|
|
|
normalize(img_in, self.mean, self.std, inplace=True) |
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
|
|
return_dict = {'in': img_in, 'gt': img_gt, 'gt_path': gt_path} |
|
|
|
if self.crop_components: |
|
return_dict['locations_in'] = locations_in |
|
return_dict['locations_gt'] = locations_gt |
|
|
|
if self.load_latent_gt: |
|
return_dict['latent_gt'] = latent_gt |
|
|
|
|
|
|
|
|
|
return return_dict |
|
|
|
|
|
def __len__(self): |
|
return len(self.paths) |