|
import math |
|
import lpips |
|
import torch |
|
from torch import autograd as autograd |
|
from torch import nn as nn |
|
from torch.nn import functional as F |
|
|
|
from basicsr.archs.vgg_arch import VGGFeatureExtractor |
|
from basicsr.utils.registry import LOSS_REGISTRY |
|
from .loss_util import weighted_loss |
|
|
|
_reduction_modes = ['none', 'mean', 'sum'] |
|
|
|
|
|
@weighted_loss |
|
def l1_loss(pred, target): |
|
return F.l1_loss(pred, target, reduction='none') |
|
|
|
|
|
@weighted_loss |
|
def mse_loss(pred, target): |
|
return F.mse_loss(pred, target, reduction='none') |
|
|
|
|
|
@weighted_loss |
|
def charbonnier_loss(pred, target, eps=1e-12): |
|
return torch.sqrt((pred - target)**2 + eps) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class L1Loss(nn.Module): |
|
"""L1 (mean absolute error, MAE) loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight for L1 loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean'): |
|
super(L1Loss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise |
|
weights. Default: None. |
|
""" |
|
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class MSELoss(nn.Module): |
|
"""MSE (L2) loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight for MSE loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean'): |
|
super(MSELoss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise |
|
weights. Default: None. |
|
""" |
|
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class CharbonnierLoss(nn.Module): |
|
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable |
|
variant of L1Loss). |
|
|
|
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate |
|
Super-Resolution". |
|
|
|
Args: |
|
loss_weight (float): Loss weight for L1 loss. Default: 1.0. |
|
reduction (str): Specifies the reduction to apply to the output. |
|
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. |
|
eps (float): A value used to control the curvature near zero. |
|
Default: 1e-12. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): |
|
super(CharbonnierLoss, self).__init__() |
|
if reduction not in ['none', 'mean', 'sum']: |
|
raise ValueError(f'Unsupported reduction mode: {reduction}. ' f'Supported ones are: {_reduction_modes}') |
|
|
|
self.loss_weight = loss_weight |
|
self.reduction = reduction |
|
self.eps = eps |
|
|
|
def forward(self, pred, target, weight=None, **kwargs): |
|
""" |
|
Args: |
|
pred (Tensor): of shape (N, C, H, W). Predicted tensor. |
|
target (Tensor): of shape (N, C, H, W). Ground truth tensor. |
|
weight (Tensor, optional): of shape (N, C, H, W). Element-wise |
|
weights. Default: None. |
|
""" |
|
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class WeightedTVLoss(L1Loss): |
|
"""Weighted TV loss. |
|
|
|
Args: |
|
loss_weight (float): Loss weight. Default: 1.0. |
|
""" |
|
|
|
def __init__(self, loss_weight=1.0): |
|
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight) |
|
|
|
def forward(self, pred, weight=None): |
|
y_diff = super(WeightedTVLoss, self).forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=weight[:, :, :-1, :]) |
|
x_diff = super(WeightedTVLoss, self).forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=weight[:, :, :, :-1]) |
|
|
|
loss = x_diff + y_diff |
|
|
|
return loss |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class PerceptualLoss(nn.Module): |
|
"""Perceptual loss with commonly used style loss. |
|
|
|
Args: |
|
layer_weights (dict): The weight for each layer of vgg feature. |
|
Here is an example: {'conv5_4': 1.}, which means the conv5_4 |
|
feature layer (before relu5_4) will be extracted with weight |
|
1.0 in calculting losses. |
|
vgg_type (str): The type of vgg network used as feature extractor. |
|
Default: 'vgg19'. |
|
use_input_norm (bool): If True, normalize the input image in vgg. |
|
Default: True. |
|
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. |
|
Default: False. |
|
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual |
|
loss will be calculated and the loss will multiplied by the |
|
weight. Default: 1.0. |
|
style_weight (float): If `style_weight > 0`, the style loss will be |
|
calculated and the loss will multiplied by the weight. |
|
Default: 0. |
|
criterion (str): Criterion used for perceptual loss. Default: 'l1'. |
|
""" |
|
|
|
def __init__(self, |
|
layer_weights, |
|
vgg_type='vgg19', |
|
use_input_norm=True, |
|
range_norm=False, |
|
perceptual_weight=1.0, |
|
style_weight=0., |
|
criterion='l1'): |
|
super(PerceptualLoss, self).__init__() |
|
self.perceptual_weight = perceptual_weight |
|
self.style_weight = style_weight |
|
self.layer_weights = layer_weights |
|
self.vgg = VGGFeatureExtractor( |
|
layer_name_list=list(layer_weights.keys()), |
|
vgg_type=vgg_type, |
|
use_input_norm=use_input_norm, |
|
range_norm=range_norm) |
|
|
|
self.criterion_type = criterion |
|
if self.criterion_type == 'l1': |
|
self.criterion = torch.nn.L1Loss() |
|
elif self.criterion_type == 'l2': |
|
self.criterion = torch.nn.L2loss() |
|
elif self.criterion_type == 'mse': |
|
self.criterion = torch.nn.MSELoss(reduction='mean') |
|
elif self.criterion_type == 'fro': |
|
self.criterion = None |
|
else: |
|
raise NotImplementedError(f'{criterion} criterion has not been supported.') |
|
|
|
def forward(self, x, gt): |
|
"""Forward function. |
|
|
|
Args: |
|
x (Tensor): Input tensor with shape (n, c, h, w). |
|
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). |
|
|
|
Returns: |
|
Tensor: Forward results. |
|
""" |
|
|
|
x_features = self.vgg(x) |
|
gt_features = self.vgg(gt.detach()) |
|
|
|
|
|
if self.perceptual_weight > 0: |
|
percep_loss = 0 |
|
for k in x_features.keys(): |
|
if self.criterion_type == 'fro': |
|
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] |
|
else: |
|
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] |
|
percep_loss *= self.perceptual_weight |
|
else: |
|
percep_loss = None |
|
|
|
|
|
if self.style_weight > 0: |
|
style_loss = 0 |
|
for k in x_features.keys(): |
|
if self.criterion_type == 'fro': |
|
style_loss += torch.norm( |
|
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] |
|
else: |
|
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( |
|
gt_features[k])) * self.layer_weights[k] |
|
style_loss *= self.style_weight |
|
else: |
|
style_loss = None |
|
|
|
return percep_loss, style_loss |
|
|
|
def _gram_mat(self, x): |
|
"""Calculate Gram matrix. |
|
|
|
Args: |
|
x (torch.Tensor): Tensor with shape of (n, c, h, w). |
|
|
|
Returns: |
|
torch.Tensor: Gram matrix. |
|
""" |
|
n, c, h, w = x.size() |
|
features = x.view(n, c, w * h) |
|
features_t = features.transpose(1, 2) |
|
gram = features.bmm(features_t) / (c * h * w) |
|
return gram |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class LPIPSLoss(nn.Module): |
|
def __init__(self, |
|
loss_weight=1.0, |
|
use_input_norm=True, |
|
range_norm=False,): |
|
super(LPIPSLoss, self).__init__() |
|
self.perceptual = lpips.LPIPS(net="vgg", spatial=False).eval() |
|
self.loss_weight = loss_weight |
|
self.use_input_norm = use_input_norm |
|
self.range_norm = range_norm |
|
|
|
if self.use_input_norm: |
|
|
|
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) |
|
|
|
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) |
|
|
|
def forward(self, pred, target): |
|
if self.range_norm: |
|
pred = (pred + 1) / 2 |
|
target = (target + 1) / 2 |
|
if self.use_input_norm: |
|
pred = (pred - self.mean) / self.std |
|
target = (target - self.mean) / self.std |
|
lpips_loss = self.perceptual(target.contiguous(), pred.contiguous()) |
|
return self.loss_weight * lpips_loss.mean() |
|
|
|
|
|
@LOSS_REGISTRY.register() |
|
class GANLoss(nn.Module): |
|
"""Define GAN loss. |
|
|
|
Args: |
|
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'. |
|
real_label_val (float): The value for real label. Default: 1.0. |
|
fake_label_val (float): The value for fake label. Default: 0.0. |
|
loss_weight (float): Loss weight. Default: 1.0. |
|
Note that loss_weight is only for generators; and it is always 1.0 |
|
for discriminators. |
|
""" |
|
|
|
def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0): |
|
super(GANLoss, self).__init__() |
|
self.gan_type = gan_type |
|
self.loss_weight = loss_weight |
|
self.real_label_val = real_label_val |
|
self.fake_label_val = fake_label_val |
|
|
|
if self.gan_type == 'vanilla': |
|
self.loss = nn.BCEWithLogitsLoss() |
|
elif self.gan_type == 'lsgan': |
|
self.loss = nn.MSELoss() |
|
elif self.gan_type == 'wgan': |
|
self.loss = self._wgan_loss |
|
elif self.gan_type == 'wgan_softplus': |
|
self.loss = self._wgan_softplus_loss |
|
elif self.gan_type == 'hinge': |
|
self.loss = nn.ReLU() |
|
else: |
|
raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.') |
|
|
|
def _wgan_loss(self, input, target): |
|
"""wgan loss. |
|
|
|
Args: |
|
input (Tensor): Input tensor. |
|
target (bool): Target label. |
|
|
|
Returns: |
|
Tensor: wgan loss. |
|
""" |
|
return -input.mean() if target else input.mean() |
|
|
|
def _wgan_softplus_loss(self, input, target): |
|
"""wgan loss with soft plus. softplus is a smooth approximation to the |
|
ReLU function. |
|
|
|
In StyleGAN2, it is called: |
|
Logistic loss for discriminator; |
|
Non-saturating loss for generator. |
|
|
|
Args: |
|
input (Tensor): Input tensor. |
|
target (bool): Target label. |
|
|
|
Returns: |
|
Tensor: wgan loss. |
|
""" |
|
return F.softplus(-input).mean() if target else F.softplus(input).mean() |
|
|
|
def get_target_label(self, input, target_is_real): |
|
"""Get target label. |
|
|
|
Args: |
|
input (Tensor): Input tensor. |
|
target_is_real (bool): Whether the target is real or fake. |
|
|
|
Returns: |
|
(bool | Tensor): Target tensor. Return bool for wgan, otherwise, |
|
return Tensor. |
|
""" |
|
|
|
if self.gan_type in ['wgan', 'wgan_softplus']: |
|
return target_is_real |
|
target_val = (self.real_label_val if target_is_real else self.fake_label_val) |
|
return input.new_ones(input.size()) * target_val |
|
|
|
def forward(self, input, target_is_real, is_disc=False): |
|
""" |
|
Args: |
|
input (Tensor): The input for the loss module, i.e., the network |
|
prediction. |
|
target_is_real (bool): Whether the targe is real or fake. |
|
is_disc (bool): Whether the loss for discriminators or not. |
|
Default: False. |
|
|
|
Returns: |
|
Tensor: GAN loss value. |
|
""" |
|
if self.gan_type == 'hinge': |
|
if is_disc: |
|
input = -input if target_is_real else input |
|
loss = self.loss(1 + input).mean() |
|
else: |
|
loss = -input.mean() |
|
else: |
|
target_label = self.get_target_label(input, target_is_real) |
|
loss = self.loss(input, target_label) |
|
|
|
|
|
return loss if is_disc else loss * self.loss_weight |
|
|
|
|
|
def r1_penalty(real_pred, real_img): |
|
"""R1 regularization for discriminator. The core idea is to |
|
penalize the gradient on real data alone: when the |
|
generator distribution produces the true data distribution |
|
and the discriminator is equal to 0 on the data manifold, the |
|
gradient penalty ensures that the discriminator cannot create |
|
a non-zero gradient orthogonal to the data manifold without |
|
suffering a loss in the GAN game. |
|
|
|
Ref: |
|
Eq. 9 in Which training methods for GANs do actually converge. |
|
""" |
|
grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0] |
|
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean() |
|
return grad_penalty |
|
|
|
|
|
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): |
|
noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3]) |
|
grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0] |
|
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) |
|
|
|
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) |
|
|
|
path_penalty = (path_lengths - path_mean).pow(2).mean() |
|
|
|
return path_penalty, path_lengths.detach().mean(), path_mean.detach() |
|
|
|
|
|
def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None): |
|
"""Calculate gradient penalty for wgan-gp. |
|
|
|
Args: |
|
discriminator (nn.Module): Network for the discriminator. |
|
real_data (Tensor): Real input data. |
|
fake_data (Tensor): Fake input data. |
|
weight (Tensor): Weight tensor. Default: None. |
|
|
|
Returns: |
|
Tensor: A tensor for gradient penalty. |
|
""" |
|
|
|
batch_size = real_data.size(0) |
|
alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1)) |
|
|
|
|
|
interpolates = alpha * real_data + (1. - alpha) * fake_data |
|
interpolates = autograd.Variable(interpolates, requires_grad=True) |
|
|
|
disc_interpolates = discriminator(interpolates) |
|
gradients = autograd.grad( |
|
outputs=disc_interpolates, |
|
inputs=interpolates, |
|
grad_outputs=torch.ones_like(disc_interpolates), |
|
create_graph=True, |
|
retain_graph=True, |
|
only_inputs=True)[0] |
|
|
|
if weight is not None: |
|
gradients = gradients * weight |
|
|
|
gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() |
|
if weight is not None: |
|
gradients_penalty /= torch.mean(weight) |
|
|
|
return gradients_penalty |
|
|