|
import datetime |
|
import logging |
|
import time |
|
|
|
from .dist_util import get_dist_info, master_only |
|
|
|
initialized_logger = {} |
|
|
|
|
|
class MessageLogger(): |
|
"""Message logger for printing. |
|
Args: |
|
opt (dict): Config. It contains the following keys: |
|
name (str): Exp name. |
|
logger (dict): Contains 'print_freq' (str) for logger interval. |
|
train (dict): Contains 'total_iter' (int) for total iters. |
|
use_tb_logger (bool): Use tensorboard logger. |
|
start_iter (int): Start iter. Default: 1. |
|
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None. |
|
""" |
|
|
|
def __init__(self, opt, start_iter=1, tb_logger=None): |
|
self.exp_name = opt['name'] |
|
self.interval = opt['logger']['print_freq'] |
|
self.start_iter = start_iter |
|
self.max_iters = opt['train']['total_iter'] |
|
self.use_tb_logger = opt['logger']['use_tb_logger'] |
|
self.tb_logger = tb_logger |
|
self.start_time = time.time() |
|
self.logger = get_root_logger() |
|
|
|
@master_only |
|
def __call__(self, log_vars): |
|
"""Format logging message. |
|
Args: |
|
log_vars (dict): It contains the following keys: |
|
epoch (int): Epoch number. |
|
iter (int): Current iter. |
|
lrs (list): List for learning rates. |
|
time (float): Iter time. |
|
data_time (float): Data time for each iter. |
|
""" |
|
|
|
epoch = log_vars.pop('epoch') |
|
current_iter = log_vars.pop('iter') |
|
lrs = log_vars.pop('lrs') |
|
|
|
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, ' f'iter:{current_iter:8,d}, lr:(') |
|
for v in lrs: |
|
message += f'{v:.3e},' |
|
message += ')] ' |
|
|
|
|
|
if 'time' in log_vars.keys(): |
|
iter_time = log_vars.pop('time') |
|
data_time = log_vars.pop('data_time') |
|
|
|
total_time = time.time() - self.start_time |
|
time_sec_avg = total_time / (current_iter - self.start_iter + 1) |
|
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1) |
|
eta_str = str(datetime.timedelta(seconds=int(eta_sec))) |
|
message += f'[eta: {eta_str}, ' |
|
message += f'time (data): {iter_time:.3f} ({data_time:.3f})] ' |
|
|
|
|
|
for k, v in log_vars.items(): |
|
message += f'{k}: {v:.4e} ' |
|
|
|
if self.use_tb_logger: |
|
|
|
|
|
|
|
self.tb_logger.add_scalar(k, v, current_iter) |
|
self.logger.info(message) |
|
|
|
|
|
@master_only |
|
def init_tb_logger(log_dir): |
|
from torch.utils.tensorboard import SummaryWriter |
|
tb_logger = SummaryWriter(log_dir=log_dir) |
|
return tb_logger |
|
|
|
|
|
@master_only |
|
def init_wandb_logger(opt): |
|
"""We now only use wandb to sync tensorboard log.""" |
|
import wandb |
|
logger = logging.getLogger('basicsr') |
|
|
|
project = opt['logger']['wandb']['project'] |
|
resume_id = opt['logger']['wandb'].get('resume_id') |
|
if resume_id: |
|
wandb_id = resume_id |
|
resume = 'allow' |
|
logger.warning(f'Resume wandb logger with id={wandb_id}.') |
|
else: |
|
wandb_id = wandb.util.generate_id() |
|
resume = 'never' |
|
|
|
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True) |
|
|
|
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.') |
|
|
|
|
|
def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None): |
|
"""Get the root logger. |
|
The logger will be initialized if it has not been initialized. By default a |
|
StreamHandler will be added. If `log_file` is specified, a FileHandler will |
|
also be added. |
|
Args: |
|
logger_name (str): root logger name. Default: 'basicsr'. |
|
log_file (str | None): The log filename. If specified, a FileHandler |
|
will be added to the root logger. |
|
log_level (int): The root logger level. Note that only the process of |
|
rank 0 is affected, while other processes will set the level to |
|
"Error" and be silent most of the time. |
|
Returns: |
|
logging.Logger: The root logger. |
|
""" |
|
logger = logging.getLogger(logger_name) |
|
|
|
if logger_name in initialized_logger: |
|
return logger |
|
|
|
format_str = '%(asctime)s %(levelname)s: %(message)s' |
|
stream_handler = logging.StreamHandler() |
|
stream_handler.setFormatter(logging.Formatter(format_str)) |
|
logger.addHandler(stream_handler) |
|
logger.propagate = False |
|
rank, _ = get_dist_info() |
|
if rank != 0: |
|
logger.setLevel('ERROR') |
|
elif log_file is not None: |
|
logger.setLevel(log_level) |
|
|
|
|
|
file_handler = logging.FileHandler(log_file, 'a') |
|
file_handler.setFormatter(logging.Formatter(format_str)) |
|
file_handler.setLevel(log_level) |
|
logger.addHandler(file_handler) |
|
initialized_logger[logger_name] = True |
|
return logger |
|
|
|
|
|
def get_env_info(): |
|
"""Get environment information. |
|
Currently, only log the software version. |
|
""" |
|
import torch |
|
import torchvision |
|
|
|
from basicsr.version import __version__ |
|
msg = r""" |
|
____ _ _____ ____ |
|
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \ |
|
/ __ |/ __ `// ___// // ___/\__ \ / /_/ / |
|
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/ |
|
/_____/ \__,_//____//_/ \___//____//_/ |_| |
|
______ __ __ __ __ |
|
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / / |
|
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / / |
|
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/ |
|
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_) |
|
""" |
|
msg += ('\nVersion Information: ' |
|
f'\n\tBasicSR: {__version__}' |
|
f'\n\tPyTorch: {torch.__version__}' |
|
f'\n\tTorchVision: {torchvision.__version__}') |
|
return msg |