|
""" |
|
This file is used for deploying replicate demo: |
|
https://replicate.com/sczhou/codeformer |
|
running: cog predict -i image=@inputs/whole_imgs/04.jpg -i codeformer_fidelity=0.5 -i upscale=2 |
|
push: cog push r8.im/sczhou/codeformer |
|
""" |
|
|
|
import tempfile |
|
import cv2 |
|
import torch |
|
from torchvision.transforms.functional import normalize |
|
try: |
|
from cog import BasePredictor, Input, Path |
|
except Exception: |
|
print('please install cog package') |
|
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from basicsr.utils import imwrite, img2tensor, tensor2img |
|
from basicsr.utils.realesrgan_utils import RealESRGANer |
|
from basicsr.utils.misc import gpu_is_available |
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
from facelib.utils.face_restoration_helper import FaceRestoreHelper |
|
|
|
class Predictor(BasePredictor): |
|
def setup(self): |
|
"""Load the model into memory to make running multiple predictions efficient""" |
|
self.device = "cuda:0" |
|
self.upsampler = set_realesrgan() |
|
self.net = ARCH_REGISTRY.get("CodeFormer")( |
|
dim_embd=512, |
|
codebook_size=1024, |
|
n_head=8, |
|
n_layers=9, |
|
connect_list=["32", "64", "128", "256"], |
|
).to(self.device) |
|
ckpt_path = "weights/CodeFormer/codeformer.pth" |
|
checkpoint = torch.load(ckpt_path)[ |
|
"params_ema" |
|
] |
|
self.net.load_state_dict(checkpoint) |
|
self.net.eval() |
|
|
|
def predict( |
|
self, |
|
image: Path = Input(description="Input image"), |
|
codeformer_fidelity: float = Input( |
|
default=0.5, |
|
ge=0, |
|
le=1, |
|
description="Balance the quality (lower number) and fidelity (higher number).", |
|
), |
|
background_enhance: bool = Input( |
|
description="Enhance background image with Real-ESRGAN", default=True |
|
), |
|
face_upsample: bool = Input( |
|
description="Upsample restored faces for high-resolution AI-created images", |
|
default=True, |
|
), |
|
upscale: int = Input( |
|
description="The final upsampling scale of the image", |
|
default=2, |
|
), |
|
) -> Path: |
|
"""Run a single prediction on the model""" |
|
|
|
|
|
has_aligned = False |
|
only_center_face = False |
|
draw_box = False |
|
detection_model = "retinaface_resnet50" |
|
|
|
self.face_helper = FaceRestoreHelper( |
|
upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model=detection_model, |
|
save_ext="png", |
|
use_parse=True, |
|
device=self.device, |
|
) |
|
|
|
bg_upsampler = self.upsampler if background_enhance else None |
|
face_upsampler = self.upsampler if face_upsample else None |
|
|
|
img = cv2.imread(str(image), cv2.IMREAD_COLOR) |
|
|
|
if has_aligned: |
|
|
|
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) |
|
self.face_helper.cropped_faces = [img] |
|
else: |
|
self.face_helper.read_image(img) |
|
|
|
num_det_faces = self.face_helper.get_face_landmarks_5( |
|
only_center_face=only_center_face, resize=640, eye_dist_threshold=5 |
|
) |
|
print(f"\tdetect {num_det_faces} faces") |
|
|
|
self.face_helper.align_warp_face() |
|
|
|
|
|
for idx, cropped_face in enumerate(self.face_helper.cropped_faces): |
|
|
|
cropped_face_t = img2tensor( |
|
cropped_face / 255.0, bgr2rgb=True, float32=True |
|
) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) |
|
|
|
try: |
|
with torch.no_grad(): |
|
output = self.net( |
|
cropped_face_t, w=codeformer_fidelity, adain=True |
|
)[0] |
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) |
|
del output |
|
torch.cuda.empty_cache() |
|
except Exception as error: |
|
print(f"\tFailed inference for CodeFormer: {error}") |
|
restored_face = tensor2img( |
|
cropped_face_t, rgb2bgr=True, min_max=(-1, 1) |
|
) |
|
|
|
restored_face = restored_face.astype("uint8") |
|
self.face_helper.add_restored_face(restored_face) |
|
|
|
|
|
if not has_aligned: |
|
|
|
if bg_upsampler is not None: |
|
|
|
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] |
|
else: |
|
bg_img = None |
|
self.face_helper.get_inverse_affine(None) |
|
|
|
if face_upsample and face_upsampler is not None: |
|
restored_img = self.face_helper.paste_faces_to_input_image( |
|
upsample_img=bg_img, |
|
draw_box=draw_box, |
|
face_upsampler=face_upsampler, |
|
) |
|
else: |
|
restored_img = self.face_helper.paste_faces_to_input_image( |
|
upsample_img=bg_img, draw_box=draw_box |
|
) |
|
|
|
|
|
out_path = Path(tempfile.mkdtemp()) / 'output.png' |
|
imwrite(restored_img, str(out_path)) |
|
|
|
return out_path |
|
|
|
|
|
def imread(img_path): |
|
img = cv2.imread(img_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
return img |
|
|
|
|
|
def set_realesrgan(): |
|
|
|
if not gpu_is_available(): |
|
import warnings |
|
|
|
warnings.warn( |
|
"The unoptimized RealESRGAN is slow on CPU. We do not use it. " |
|
"If you really want to use it, please modify the corresponding codes.", |
|
category=RuntimeWarning, |
|
) |
|
upsampler = None |
|
else: |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=2, |
|
) |
|
upsampler = RealESRGANer( |
|
scale=2, |
|
model_path="./weights/realesrgan/RealESRGAN_x2plus.pth", |
|
model=model, |
|
tile=400, |
|
tile_pad=40, |
|
pre_pad=0, |
|
half=True, |
|
) |
|
return upsampler |
|
|