|
import math |
|
import numpy as np |
|
import torch |
|
from torch import nn, Tensor |
|
import torch.nn.functional as F |
|
from typing import Optional, List |
|
|
|
from basicsr.archs.vqgan_arch import * |
|
from basicsr.utils import get_root_logger |
|
from basicsr.utils.registry import ARCH_REGISTRY |
|
|
|
def calc_mean_std(feat, eps=1e-5): |
|
"""Calculate mean and std for adaptive_instance_normalization. |
|
|
|
Args: |
|
feat (Tensor): 4D tensor. |
|
eps (float): A small value added to the variance to avoid |
|
divide-by-zero. Default: 1e-5. |
|
""" |
|
size = feat.size() |
|
assert len(size) == 4, 'The input feature should be 4D tensor.' |
|
b, c = size[:2] |
|
feat_var = feat.view(b, c, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(b, c, 1, 1) |
|
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat): |
|
"""Adaptive instance normalization. |
|
|
|
Adjust the reference features to have the similar color and illuminations |
|
as those in the degradate features. |
|
|
|
Args: |
|
content_feat (Tensor): The reference feature. |
|
style_feat (Tensor): The degradate features. |
|
""" |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
|
|
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): |
|
super().__init__() |
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
def forward(self, x, mask=None): |
|
if mask is None: |
|
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
def _get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
class TransformerSALayer(nn.Module): |
|
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): |
|
super().__init__() |
|
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) |
|
|
|
self.linear1 = nn.Linear(embed_dim, dim_mlp) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_mlp, embed_dim) |
|
|
|
self.norm1 = nn.LayerNorm(embed_dim) |
|
self.norm2 = nn.LayerNorm(embed_dim) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
self.activation = _get_activation_fn(activation) |
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward(self, tgt, |
|
tgt_mask: Optional[Tensor] = None, |
|
tgt_key_padding_mask: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None): |
|
|
|
|
|
tgt2 = self.norm1(tgt) |
|
q = k = self.with_pos_embed(tgt2, query_pos) |
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, |
|
key_padding_mask=tgt_key_padding_mask)[0] |
|
tgt = tgt + self.dropout1(tgt2) |
|
|
|
|
|
tgt2 = self.norm2(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout2(tgt2) |
|
return tgt |
|
|
|
class Fuse_sft_block(nn.Module): |
|
def __init__(self, in_ch, out_ch): |
|
super().__init__() |
|
self.encode_enc = ResBlock(2*in_ch, out_ch) |
|
|
|
self.scale = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) |
|
|
|
self.shift = nn.Sequential( |
|
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), |
|
nn.LeakyReLU(0.2, True), |
|
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) |
|
|
|
def forward(self, enc_feat, dec_feat, w=1): |
|
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) |
|
scale = self.scale(enc_feat) |
|
shift = self.shift(enc_feat) |
|
residual = w * (dec_feat * scale + shift) |
|
out = dec_feat + residual |
|
return out |
|
|
|
|
|
@ARCH_REGISTRY.register() |
|
class CodeFormer(VQAutoEncoder): |
|
def __init__(self, dim_embd=512, n_head=8, n_layers=9, |
|
codebook_size=1024, latent_size=256, |
|
connect_list=['32', '64', '128', '256'], |
|
fix_modules=['quantize','generator'], vqgan_path=None): |
|
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) |
|
|
|
if vqgan_path is not None: |
|
self.load_state_dict( |
|
torch.load(vqgan_path, map_location='cpu')['params_ema']) |
|
|
|
if fix_modules is not None: |
|
for module in fix_modules: |
|
for param in getattr(self, module).parameters(): |
|
param.requires_grad = False |
|
|
|
self.connect_list = connect_list |
|
self.n_layers = n_layers |
|
self.dim_embd = dim_embd |
|
self.dim_mlp = dim_embd*2 |
|
|
|
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) |
|
self.feat_emb = nn.Linear(256, self.dim_embd) |
|
|
|
|
|
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) |
|
for _ in range(self.n_layers)]) |
|
|
|
|
|
self.idx_pred_layer = nn.Sequential( |
|
nn.LayerNorm(dim_embd), |
|
nn.Linear(dim_embd, codebook_size, bias=False)) |
|
|
|
self.channels = { |
|
'16': 512, |
|
'32': 256, |
|
'64': 256, |
|
'128': 128, |
|
'256': 128, |
|
'512': 64, |
|
} |
|
|
|
|
|
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} |
|
|
|
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} |
|
|
|
|
|
self.fuse_convs_dict = nn.ModuleDict() |
|
for f_size in self.connect_list: |
|
in_ch = self.channels[f_size] |
|
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, (nn.Linear, nn.Embedding)): |
|
module.weight.data.normal_(mean=0.0, std=0.02) |
|
if isinstance(module, nn.Linear) and module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): |
|
|
|
enc_feat_dict = {} |
|
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] |
|
for i, block in enumerate(self.encoder.blocks): |
|
x = block(x) |
|
if i in out_list: |
|
enc_feat_dict[str(x.shape[-1])] = x.clone() |
|
|
|
lq_feat = x |
|
|
|
|
|
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) |
|
|
|
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) |
|
query_emb = feat_emb |
|
|
|
for layer in self.ft_layers: |
|
query_emb = layer(query_emb, query_pos=pos_emb) |
|
|
|
|
|
logits = self.idx_pred_layer(query_emb) |
|
logits = logits.permute(1,0,2) |
|
|
|
if code_only: |
|
|
|
return logits, lq_feat |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soft_one_hot = F.softmax(logits, dim=2) |
|
_, top_idx = torch.topk(soft_one_hot, 1, dim=2) |
|
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) |
|
|
|
|
|
|
|
if detach_16: |
|
quant_feat = quant_feat.detach() |
|
if adain: |
|
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) |
|
|
|
|
|
x = quant_feat |
|
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] |
|
|
|
for i, block in enumerate(self.generator.blocks): |
|
x = block(x) |
|
if i in fuse_list: |
|
f_size = str(x.shape[-1]) |
|
if w>0: |
|
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) |
|
out = x |
|
|
|
return out, logits, lq_feat |