|
import math |
|
import numpy as np |
|
import random |
|
from scipy.ndimage.interpolation import shift |
|
from scipy.stats import multivariate_normal |
|
|
|
|
|
def sigma_matrix2(sig_x, sig_y, theta): |
|
"""Calculate the rotated sigma matrix (two dimensional matrix). |
|
Args: |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
Returns: |
|
ndarray: Rotated sigma matrix. |
|
""" |
|
D = np.array([[sig_x**2, 0], [0, sig_y**2]]) |
|
U = np.array([[np.cos(theta), -np.sin(theta)], |
|
[np.sin(theta), np.cos(theta)]]) |
|
return np.dot(U, np.dot(D, U.T)) |
|
|
|
|
|
def mesh_grid(kernel_size): |
|
"""Generate the mesh grid, centering at zero. |
|
Args: |
|
kernel_size (int): |
|
Returns: |
|
xy (ndarray): with the shape (kernel_size, kernel_size, 2) |
|
xx (ndarray): with the shape (kernel_size, kernel_size) |
|
yy (ndarray): with the shape (kernel_size, kernel_size) |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) |
|
xx, yy = np.meshgrid(ax, ax) |
|
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), |
|
yy.reshape(kernel_size * kernel_size, |
|
1))).reshape(kernel_size, kernel_size, 2) |
|
return xy, xx, yy |
|
|
|
|
|
def pdf2(sigma_matrix, grid): |
|
"""Calculate PDF of the bivariate Gaussian distribution. |
|
Args: |
|
sigma_matrix (ndarray): with the shape (2, 2) |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
Returns: |
|
kernel (ndarrray): un-normalized kernel. |
|
""" |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) |
|
return kernel |
|
|
|
|
|
def cdf2(D, grid): |
|
"""Calculate the CDF of the standard bivariate Gaussian distribution. |
|
Used in skewed Gaussian distribution. |
|
Args: |
|
D (ndarrasy): skew matrix. |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
Returns: |
|
cdf (ndarray): skewed cdf. |
|
""" |
|
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]]) |
|
grid = np.dot(grid, D) |
|
cdf = rv.cdf(grid) |
|
return cdf |
|
|
|
|
|
def bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid=None): |
|
"""Generate a bivariate skew Gaussian kernel. |
|
Described in `A multivariate skew normal distribution`_ by Shi et. al (2004). |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
D (ndarrasy): skew matrix. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
.. _A multivariate skew normal distribution: |
|
https://www.sciencedirect.com/science/article/pii/S0047259X03001313 |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
pdf = pdf2(sigma_matrix, grid) |
|
cdf = cdf2(D, grid) |
|
kernel = pdf * cdf |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def mass_center_shift(kernel_size, kernel): |
|
"""Calculate the shift of the mass center of a kenrel. |
|
Args: |
|
kernel_size (int): |
|
kernel (ndarray): normalized kernel. |
|
Returns: |
|
delta_h (float): |
|
delta_w (float): |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) |
|
col_sum, row_sum = np.sum(kernel, axis=0), np.sum(kernel, axis=1) |
|
delta_h = np.dot(row_sum, ax) |
|
delta_w = np.dot(col_sum, ax) |
|
return delta_h, delta_w |
|
|
|
|
|
def bivariate_skew_Gaussian_center(kernel_size, |
|
sig_x, |
|
sig_y, |
|
theta, |
|
D, |
|
grid=None): |
|
"""Generate a bivariate skew Gaussian kernel at center. Shift with nearest padding. |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
D (ndarrasy): skew matrix. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): centered and normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
kernel = bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid) |
|
delta_h, delta_w = mass_center_shift(kernel_size, kernel) |
|
kernel = shift(kernel, [-delta_h, -delta_w], mode='nearest') |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_anisotropic_Gaussian(kernel_size, |
|
sig_x, |
|
sig_y, |
|
theta, |
|
grid=None): |
|
"""Generate a bivariate anisotropic Gaussian kernel. |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_isotropic_Gaussian(kernel_size, sig, grid=None): |
|
"""Generate a bivariate isotropic Gaussian kernel. |
|
Args: |
|
kernel_size (int): |
|
sig (float): |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_generalized_Gaussian(kernel_size, |
|
sig_x, |
|
sig_y, |
|
theta, |
|
beta, |
|
grid=None): |
|
"""Generate a bivariate generalized Gaussian kernel. |
|
Described in `Parameter Estimation For Multivariate Generalized Gaussian Distributions`_ |
|
by Pascal et. al (2013). |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
beta (float): shape parameter, beta = 1 is the normal distribution. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
.. _Parameter Estimation For Multivariate Generalized Gaussian Distributions: |
|
https://arxiv.org/abs/1302.6498 |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp( |
|
-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta)) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_plateau_type1(kernel_size, sig_x, sig_y, theta, beta, grid=None): |
|
"""Generate a plateau-like anisotropic kernel. |
|
1 / (1+x^(beta)) |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
beta (float): shape parameter, beta = 1 is the normal distribution. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.reciprocal( |
|
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def bivariate_plateau_type1_iso(kernel_size, sig, beta, grid=None): |
|
"""Generate a plateau-like isotropic kernel. |
|
1 / (1+x^(beta)) |
|
Args: |
|
kernel_size (int): |
|
sig (float): |
|
beta (float): shape parameter, beta = 1 is the normal distribution. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]]) |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.reciprocal( |
|
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def random_bivariate_skew_Gaussian_center(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate skew Gaussian kernels at center. |
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
if strict: |
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
sigma_min = np.min([sigma_x, sigma_y]) |
|
sigma_x, sigma_y = sigma_max, sigma_min |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
|
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
thres = 3 / sigma_max |
|
D = [[np.random.uniform(-thres, thres), |
|
np.random.uniform(-thres, thres)], |
|
[np.random.uniform(-thres, thres), |
|
np.random.uniform(-thres, thres)]] |
|
|
|
kernel = bivariate_skew_Gaussian_center(kernel_size, sigma_x, sigma_y, |
|
rotation, D) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma_x, sigma_y, rotation, D |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_anisotropic_Gaussian(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate anisotropic Gaussian kernels. |
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
if strict: |
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
sigma_min = np.min([sigma_x, sigma_y]) |
|
sigma_x, sigma_y = sigma_max, sigma_min |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
|
|
kernel = bivariate_anisotropic_Gaussian(kernel_size, sigma_x, sigma_y, |
|
rotation) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma_x, sigma_y, rotation |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_isotropic_Gaussian(kernel_size, |
|
sigma_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate isotropic Gaussian kernels. |
|
Args: |
|
kernel_size (int): |
|
sigma_range (tuple): [0.6, 5] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' |
|
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) |
|
|
|
kernel = bivariate_isotropic_Gaussian(kernel_size, sigma) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_generalized_Gaussian(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate generalized Gaussian kernels. |
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
beta_range (tuple): [0.5, 8] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
if strict: |
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
sigma_min = np.min([sigma_x, sigma_y]) |
|
sigma_x, sigma_y = sigma_max, sigma_min |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
if np.random.uniform() < 0.5: |
|
beta = np.random.uniform(beta_range[0], 1) |
|
else: |
|
beta = np.random.uniform(1, beta_range[1]) |
|
|
|
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, |
|
rotation, beta) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma_x, sigma_y, rotation, beta |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_plateau_type1(kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate plateau type1 kernels. |
|
Args: |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi/2, math.pi/2] |
|
beta_range (tuple): [1, 4] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.' |
|
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.' |
|
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.' |
|
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1]) |
|
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1]) |
|
if strict: |
|
sigma_max = np.max([sigma_x, sigma_y]) |
|
sigma_min = np.min([sigma_x, sigma_y]) |
|
sigma_x, sigma_y = sigma_max, sigma_min |
|
rotation = np.random.uniform(rotation_range[0], rotation_range[1]) |
|
if np.random.uniform() < 0.5: |
|
beta = np.random.uniform(beta_range[0], 1) |
|
else: |
|
beta = np.random.uniform(1, beta_range[1]) |
|
|
|
kernel = bivariate_plateau_type1(kernel_size, sigma_x, sigma_y, rotation, |
|
beta) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma_x, sigma_y, rotation, beta |
|
else: |
|
return kernel |
|
|
|
|
|
def random_bivariate_plateau_type1_iso(kernel_size, |
|
sigma_range, |
|
beta_range, |
|
noise_range=None, |
|
strict=False): |
|
"""Randomly generate bivariate plateau type1 kernels (iso). |
|
Args: |
|
kernel_size (int): |
|
sigma_range (tuple): [0.6, 5] |
|
beta_range (tuple): [1, 4] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' |
|
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.' |
|
sigma = np.random.uniform(sigma_range[0], sigma_range[1]) |
|
beta = np.random.uniform(beta_range[0], beta_range[1]) |
|
|
|
kernel = bivariate_plateau_type1_iso(kernel_size, sigma, beta) |
|
|
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
if strict: |
|
return kernel, sigma, beta |
|
else: |
|
return kernel |
|
|
|
|
|
def random_mixed_kernels(kernel_list, |
|
kernel_prob, |
|
kernel_size=21, |
|
sigma_x_range=[0.6, 5], |
|
sigma_y_range=[0.6, 5], |
|
rotation_range=[-math.pi, math.pi], |
|
beta_range=[0.5, 8], |
|
noise_range=None): |
|
"""Randomly generate mixed kernels. |
|
Args: |
|
kernel_list (tuple): a list name of kenrel types, |
|
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', 'plateau_aniso'] |
|
kernel_prob (tuple): corresponding kernel probability for each kernel type |
|
kernel_size (int): |
|
sigma_x_range (tuple): [0.6, 5] |
|
sigma_y_range (tuple): [0.6, 5] |
|
rotation range (tuple): [-math.pi, math.pi] |
|
beta_range (tuple): [0.5, 8] |
|
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None |
|
Returns: |
|
kernel (ndarray): |
|
""" |
|
kernel_type = random.choices(kernel_list, kernel_prob)[0] |
|
if kernel_type == 'iso': |
|
kernel = random_bivariate_isotropic_Gaussian( |
|
kernel_size, sigma_x_range, noise_range=noise_range) |
|
elif kernel_type == 'aniso': |
|
kernel = random_bivariate_anisotropic_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=noise_range) |
|
elif kernel_type == 'skew': |
|
kernel = random_bivariate_skew_Gaussian_center( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
noise_range=noise_range) |
|
elif kernel_type == 'generalized': |
|
kernel = random_bivariate_generalized_Gaussian( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=noise_range) |
|
elif kernel_type == 'plateau_iso': |
|
kernel = random_bivariate_plateau_type1_iso( |
|
kernel_size, sigma_x_range, beta_range, noise_range=noise_range) |
|
elif kernel_type == 'plateau_aniso': |
|
kernel = random_bivariate_plateau_type1( |
|
kernel_size, |
|
sigma_x_range, |
|
sigma_y_range, |
|
rotation_range, |
|
beta_range, |
|
noise_range=noise_range) |
|
|
|
if noise_range is not None: |
|
assert noise_range[0] < noise_range[1], 'Wrong noise range.' |
|
noise = np.random.uniform( |
|
noise_range[0], noise_range[1], size=kernel.shape) |
|
kernel = kernel * noise |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
|
|
def show_one_kernel(): |
|
import matplotlib.pyplot as plt |
|
kernel_size = 21 |
|
|
|
|
|
D = [[0, 0], [0, 0]] |
|
D = [[3 / 4, 0], [0, 0.5]] |
|
kernel = bivariate_skew_Gaussian_center(kernel_size, 2, 4, -math.pi / 4, D) |
|
|
|
kernel = bivariate_anisotropic_Gaussian(kernel_size, 2, 4, -math.pi / 4) |
|
|
|
kernel = bivariate_isotropic_Gaussian(kernel_size, 1) |
|
|
|
kernel = bivariate_generalized_Gaussian( |
|
kernel_size, 2, 4, -math.pi / 4, beta=4) |
|
|
|
delta_h, delta_w = mass_center_shift(kernel_size, kernel) |
|
print(delta_h, delta_w) |
|
|
|
fig, axs = plt.subplots(nrows=2, ncols=2) |
|
|
|
ax = axs[0][0] |
|
im = ax.matshow(kernel, cmap='jet', origin='upper') |
|
fig.colorbar(im, ax=ax) |
|
|
|
|
|
ax = axs[0][1] |
|
kernel_vis = kernel - np.min(kernel) |
|
kernel_vis = kernel_vis / np.max(kernel_vis) * 255. |
|
ax.imshow(kernel_vis, interpolation='nearest') |
|
|
|
_, xx, yy = mesh_grid(kernel_size) |
|
|
|
ax = axs[1][0] |
|
CS = ax.contour(xx, yy, kernel, origin='upper') |
|
ax.clabel(CS, inline=1, fontsize=3) |
|
|
|
|
|
ax = axs[1][1] |
|
kernel = kernel / np.max(kernel) |
|
p = ax.contourf( |
|
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10)) |
|
fig.colorbar(p) |
|
|
|
plt.show() |
|
|
|
|
|
def show_plateau_kernel(): |
|
import matplotlib.pyplot as plt |
|
kernel_size = 21 |
|
|
|
kernel = plateau_type1(kernel_size, 2, 4, -math.pi / 8, 2, grid=None) |
|
kernel_norm = bivariate_isotropic_Gaussian(kernel_size, 5) |
|
kernel_gau = bivariate_generalized_Gaussian( |
|
kernel_size, 2, 4, -math.pi / 8, 2, grid=None) |
|
delta_h, delta_w = mass_center_shift(kernel_size, kernel) |
|
print(delta_h, delta_w) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fig, axs = plt.subplots(nrows=2, ncols=2) |
|
|
|
ax = axs[0][0] |
|
im = ax.matshow(kernel, cmap='jet', origin='upper') |
|
fig.colorbar(im, ax=ax) |
|
|
|
|
|
ax = axs[0][1] |
|
kernel_vis = kernel - np.min(kernel) |
|
kernel_vis = kernel_vis / np.max(kernel_vis) * 255. |
|
ax.imshow(kernel_vis, interpolation='nearest') |
|
|
|
_, xx, yy = mesh_grid(kernel_size) |
|
|
|
ax = axs[1][0] |
|
CS = ax.contour(xx, yy, kernel, origin='upper') |
|
ax.clabel(CS, inline=1, fontsize=3) |
|
|
|
|
|
ax = axs[1][1] |
|
kernel = kernel / np.max(kernel) |
|
p = ax.contourf( |
|
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10)) |
|
fig.colorbar(p) |
|
|
|
plt.show() |
|
|