|
import torch |
|
from collections import OrderedDict |
|
from os import path as osp |
|
from tqdm import tqdm |
|
|
|
from basicsr.archs import build_network |
|
from basicsr.losses import build_loss |
|
from basicsr.metrics import calculate_metric |
|
from basicsr.utils import get_root_logger, imwrite, tensor2img |
|
from basicsr.utils.registry import MODEL_REGISTRY |
|
import torch.nn.functional as F |
|
from .sr_model import SRModel |
|
|
|
|
|
@MODEL_REGISTRY.register() |
|
class CodeFormerModel(SRModel): |
|
def feed_data(self, data): |
|
self.gt = data['gt'].to(self.device) |
|
self.input = data['in'].to(self.device) |
|
self.b = self.gt.shape[0] |
|
|
|
if 'latent_gt' in data: |
|
self.idx_gt = data['latent_gt'].to(self.device) |
|
self.idx_gt = self.idx_gt.view(self.b, -1) |
|
else: |
|
self.idx_gt = None |
|
|
|
def init_training_settings(self): |
|
logger = get_root_logger() |
|
train_opt = self.opt['train'] |
|
|
|
self.ema_decay = train_opt.get('ema_decay', 0) |
|
if self.ema_decay > 0: |
|
logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}') |
|
|
|
|
|
|
|
self.net_g_ema = build_network(self.opt['network_g']).to(self.device) |
|
|
|
load_path = self.opt['path'].get('pretrain_network_g', None) |
|
if load_path is not None: |
|
self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema') |
|
else: |
|
self.model_ema(0) |
|
self.net_g_ema.eval() |
|
|
|
if self.opt.get('network_vqgan', None) is not None and self.opt['datasets'].get('latent_gt_path') is None: |
|
self.hq_vqgan_fix = build_network(self.opt['network_vqgan']).to(self.device) |
|
self.hq_vqgan_fix.eval() |
|
self.generate_idx_gt = True |
|
for param in self.hq_vqgan_fix.parameters(): |
|
param.requires_grad = False |
|
else: |
|
self.generate_idx_gt = False |
|
|
|
self.hq_feat_loss = train_opt.get('use_hq_feat_loss', True) |
|
self.feat_loss_weight = train_opt.get('feat_loss_weight', 1.0) |
|
self.cross_entropy_loss = train_opt.get('cross_entropy_loss', True) |
|
self.entropy_loss_weight = train_opt.get('entropy_loss_weight', 0.5) |
|
self.fidelity_weight = train_opt.get('fidelity_weight', 1.0) |
|
self.scale_adaptive_gan_weight = train_opt.get('scale_adaptive_gan_weight', 0.8) |
|
|
|
|
|
self.net_g.train() |
|
|
|
if self.fidelity_weight > 0: |
|
self.net_d = build_network(self.opt['network_d']) |
|
self.net_d = self.model_to_device(self.net_d) |
|
self.print_network(self.net_d) |
|
|
|
|
|
load_path = self.opt['path'].get('pretrain_network_d', None) |
|
if load_path is not None: |
|
self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True)) |
|
|
|
self.net_d.train() |
|
|
|
|
|
if train_opt.get('pixel_opt'): |
|
self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device) |
|
else: |
|
self.cri_pix = None |
|
|
|
if train_opt.get('perceptual_opt'): |
|
self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device) |
|
else: |
|
self.cri_perceptual = None |
|
|
|
if train_opt.get('gan_opt'): |
|
self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device) |
|
|
|
|
|
self.fix_generator = train_opt.get('fix_generator', True) |
|
logger.info(f'fix_generator: {self.fix_generator}') |
|
|
|
self.net_g_start_iter = train_opt.get('net_g_start_iter', 0) |
|
self.net_d_iters = train_opt.get('net_d_iters', 1) |
|
self.net_d_start_iter = train_opt.get('net_d_start_iter', 0) |
|
|
|
|
|
self.setup_optimizers() |
|
self.setup_schedulers() |
|
|
|
def calculate_adaptive_weight(self, recon_loss, g_loss, last_layer, disc_weight_max): |
|
recon_grads = torch.autograd.grad(recon_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
|
|
d_weight = torch.norm(recon_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp(d_weight, 0.0, disc_weight_max).detach() |
|
return d_weight |
|
|
|
def setup_optimizers(self): |
|
train_opt = self.opt['train'] |
|
|
|
optim_params_g = [] |
|
for k, v in self.net_g.named_parameters(): |
|
if v.requires_grad: |
|
optim_params_g.append(v) |
|
else: |
|
logger = get_root_logger() |
|
logger.warning(f'Params {k} will not be optimized.') |
|
optim_type = train_opt['optim_g'].pop('type') |
|
self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g']) |
|
self.optimizers.append(self.optimizer_g) |
|
|
|
if self.fidelity_weight > 0: |
|
optim_type = train_opt['optim_d'].pop('type') |
|
self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d']) |
|
self.optimizers.append(self.optimizer_d) |
|
|
|
def gray_resize_for_identity(self, out, size=128): |
|
out_gray = (0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :]) |
|
out_gray = out_gray.unsqueeze(1) |
|
out_gray = F.interpolate(out_gray, (size, size), mode='bilinear', align_corners=False) |
|
return out_gray |
|
|
|
def optimize_parameters(self, current_iter): |
|
logger = get_root_logger() |
|
|
|
for p in self.net_d.parameters(): |
|
p.requires_grad = False |
|
|
|
self.optimizer_g.zero_grad() |
|
|
|
if self.generate_idx_gt: |
|
x = self.hq_vqgan_fix.encoder(self.gt) |
|
output, _, quant_stats = self.hq_vqgan_fix.quantize(x) |
|
min_encoding_indices = quant_stats['min_encoding_indices'] |
|
self.idx_gt = min_encoding_indices.view(self.b, -1) |
|
|
|
if self.fidelity_weight > 0: |
|
self.output, logits, lq_feat = self.net_g(self.input, w=self.fidelity_weight, detach_16=True) |
|
else: |
|
logits, lq_feat = self.net_g(self.input, w=0, code_only=True) |
|
|
|
if self.hq_feat_loss: |
|
|
|
quant_feat_gt = self.net_g.module.quantize.get_codebook_feat(self.idx_gt, shape=[self.b,16,16,256]) |
|
|
|
l_g_total = 0 |
|
loss_dict = OrderedDict() |
|
if current_iter % self.net_d_iters == 0 and current_iter > self.net_g_start_iter: |
|
|
|
if self.hq_feat_loss: |
|
l_feat_encoder = torch.mean((quant_feat_gt.detach()-lq_feat)**2) * self.feat_loss_weight |
|
l_g_total += l_feat_encoder |
|
loss_dict['l_feat_encoder'] = l_feat_encoder |
|
|
|
|
|
if self.cross_entropy_loss: |
|
|
|
cross_entropy_loss = F.cross_entropy(logits.permute(0, 2, 1), self.idx_gt) * self.entropy_loss_weight |
|
l_g_total += cross_entropy_loss |
|
loss_dict['cross_entropy_loss'] = cross_entropy_loss |
|
|
|
if self.fidelity_weight > 0: |
|
|
|
if self.cri_pix: |
|
l_g_pix = self.cri_pix(self.output, self.gt) |
|
l_g_total += l_g_pix |
|
loss_dict['l_g_pix'] = l_g_pix |
|
|
|
|
|
if self.cri_perceptual: |
|
l_g_percep = self.cri_perceptual(self.output, self.gt) |
|
l_g_total += l_g_percep |
|
loss_dict['l_g_percep'] = l_g_percep |
|
|
|
|
|
if current_iter > self.net_d_start_iter: |
|
fake_g_pred = self.net_d(self.output) |
|
l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False) |
|
recon_loss = l_g_pix + l_g_percep |
|
if not self.fix_generator: |
|
last_layer = self.net_g.module.generator.blocks[-1].weight |
|
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0) |
|
else: |
|
largest_fuse_size = self.opt['network_g']['connect_list'][-1] |
|
last_layer = self.net_g.module.fuse_convs_dict[largest_fuse_size].shift[-1].weight |
|
d_weight = self.calculate_adaptive_weight(recon_loss, l_g_gan, last_layer, disc_weight_max=1.0) |
|
|
|
d_weight *= self.scale_adaptive_gan_weight |
|
loss_dict['d_weight'] = d_weight |
|
l_g_total += d_weight * l_g_gan |
|
loss_dict['l_g_gan'] = d_weight * l_g_gan |
|
|
|
l_g_total.backward() |
|
self.optimizer_g.step() |
|
|
|
if self.ema_decay > 0: |
|
self.model_ema(decay=self.ema_decay) |
|
|
|
|
|
if current_iter > self.net_d_start_iter and self.fidelity_weight > 0: |
|
for p in self.net_d.parameters(): |
|
p.requires_grad = True |
|
|
|
self.optimizer_d.zero_grad() |
|
|
|
real_d_pred = self.net_d(self.gt) |
|
l_d_real = self.cri_gan(real_d_pred, True, is_disc=True) |
|
loss_dict['l_d_real'] = l_d_real |
|
loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) |
|
l_d_real.backward() |
|
|
|
fake_d_pred = self.net_d(self.output.detach()) |
|
l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True) |
|
loss_dict['l_d_fake'] = l_d_fake |
|
loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) |
|
l_d_fake.backward() |
|
|
|
self.optimizer_d.step() |
|
|
|
self.log_dict = self.reduce_loss_dict(loss_dict) |
|
|
|
|
|
def test(self): |
|
with torch.no_grad(): |
|
if hasattr(self, 'net_g_ema'): |
|
self.net_g_ema.eval() |
|
self.output, _, _ = self.net_g_ema(self.input, w=self.fidelity_weight) |
|
else: |
|
logger = get_root_logger() |
|
logger.warning('Do not have self.net_g_ema, use self.net_g.') |
|
self.net_g.eval() |
|
self.output, _, _ = self.net_g(self.input, w=self.fidelity_weight) |
|
self.net_g.train() |
|
|
|
|
|
def dist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
if self.opt['rank'] == 0: |
|
self.nondist_validation(dataloader, current_iter, tb_logger, save_img) |
|
|
|
|
|
def nondist_validation(self, dataloader, current_iter, tb_logger, save_img): |
|
dataset_name = dataloader.dataset.opt['name'] |
|
with_metrics = self.opt['val'].get('metrics') is not None |
|
if with_metrics: |
|
self.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()} |
|
pbar = tqdm(total=len(dataloader), unit='image') |
|
|
|
for idx, val_data in enumerate(dataloader): |
|
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] |
|
self.feed_data(val_data) |
|
self.test() |
|
|
|
visuals = self.get_current_visuals() |
|
sr_img = tensor2img([visuals['result']]) |
|
if 'gt' in visuals: |
|
gt_img = tensor2img([visuals['gt']]) |
|
del self.gt |
|
|
|
|
|
del self.lq |
|
del self.output |
|
torch.cuda.empty_cache() |
|
|
|
if save_img: |
|
if self.opt['is_train']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], img_name, |
|
f'{img_name}_{current_iter}.png') |
|
else: |
|
if self.opt['val']['suffix']: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["val"]["suffix"]}.png') |
|
else: |
|
save_img_path = osp.join(self.opt['path']['visualization'], dataset_name, |
|
f'{img_name}_{self.opt["name"]}.png') |
|
imwrite(sr_img, save_img_path) |
|
|
|
if with_metrics: |
|
|
|
for name, opt_ in self.opt['val']['metrics'].items(): |
|
metric_data = dict(img1=sr_img, img2=gt_img) |
|
self.metric_results[name] += calculate_metric(metric_data, opt_) |
|
pbar.update(1) |
|
pbar.set_description(f'Test {img_name}') |
|
pbar.close() |
|
|
|
if with_metrics: |
|
for metric in self.metric_results.keys(): |
|
self.metric_results[metric] /= (idx + 1) |
|
|
|
self._log_validation_metric_values(current_iter, dataset_name, tb_logger) |
|
|
|
|
|
def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger): |
|
log_str = f'Validation {dataset_name}\n' |
|
for metric, value in self.metric_results.items(): |
|
log_str += f'\t # {metric}: {value:.4f}\n' |
|
logger = get_root_logger() |
|
logger.info(log_str) |
|
if tb_logger: |
|
for metric, value in self.metric_results.items(): |
|
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) |
|
|
|
|
|
def get_current_visuals(self): |
|
out_dict = OrderedDict() |
|
out_dict['gt'] = self.gt.detach().cpu() |
|
out_dict['result'] = self.output.detach().cpu() |
|
return out_dict |
|
|
|
|
|
def save(self, epoch, current_iter): |
|
if self.ema_decay > 0: |
|
self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema']) |
|
else: |
|
self.save_network(self.net_g, 'net_g', current_iter) |
|
if self.fidelity_weight > 0: |
|
self.save_network(self.net_d, 'net_d', current_iter) |
|
self.save_training_state(epoch, current_iter) |
|
|