zheng438's picture
zheng438/distilbert-base-uncased-lora-text-classification
3b39680 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2300
  • Accuracy: {'accuracy': 0.861}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5358 {'accuracy': 0.853}
0.398 2.0 500 0.5237 {'accuracy': 0.866}
0.398 3.0 750 0.6152 {'accuracy': 0.849}
0.1864 4.0 1000 0.7506 {'accuracy': 0.855}
0.1864 5.0 1250 0.9820 {'accuracy': 0.867}
0.0382 6.0 1500 1.0581 {'accuracy': 0.856}
0.0382 7.0 1750 1.1583 {'accuracy': 0.862}
0.0149 8.0 2000 1.2200 {'accuracy': 0.858}
0.0149 9.0 2250 1.2581 {'accuracy': 0.862}
0.006 10.0 2500 1.2300 {'accuracy': 0.861}

Framework versions

  • PEFT 0.8.1
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.1