Edit model card

sd3_egg_r64_v2

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.

The main validation prompt used during training was:

e4g4, Pet Egg, Ocean Essence, Pokémon Game Item, White Background, Ken Sugimori Style, Vector Art, Marine

Validation settings

  • CFG: 5.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
e4g4, Pet Egg, Ocean Essence, Pokémon Game Item, White Background, Ken Sugimori Style, Vector Art, Marine
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 72
  • Training steps: 4000
  • Learning rate: 0.0001
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: No
  • Xformers: Not used
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

sd3_egg_rank64

  • Repeats: 4
  • Total number of images: 11
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'zwloong/sd3_egg_r64_v2'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "e4g4, Pet Egg, Ocean Essence, Pokémon Game Item, White Background, Ken Sugimori Style, Vector Art, Marine"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
4
Inference API
Examples

Model tree for zwloong/sd3_egg_r64_v2

Adapter
(142)
this model