finetuned-FER2013 / README.md
3una's picture
Model save
fcb31ae
|
raw
history blame
4.26 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-FER2013
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7011494252873564

finetuned-FER2013

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8313
  • Accuracy: 0.7011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7483 1.0 202 1.7005 0.3386
1.4419 2.0 404 1.3213 0.5315
1.2917 3.0 606 1.1559 0.5785
1.2437 4.0 808 1.0729 0.6162
1.1635 5.0 1010 1.0161 0.6311
1.1087 6.0 1212 0.9862 0.6465
1.0964 7.0 1414 0.9901 0.6440
1.0895 8.0 1616 0.9410 0.6555
1.0384 9.0 1818 0.9221 0.6628
1.0333 10.0 2020 0.9142 0.6681
1.0016 11.0 2222 0.9081 0.6681
0.9503 12.0 2424 0.9013 0.6712
0.9804 13.0 2626 0.8937 0.6771
0.9712 14.0 2828 0.8809 0.6830
1.0151 15.0 3030 0.8704 0.6855
0.9739 16.0 3232 0.8886 0.6775
0.9267 17.0 3434 0.8653 0.6855
0.9428 18.0 3636 0.8633 0.6848
0.9654 19.0 3838 0.8697 0.6809
0.9256 20.0 4040 0.8559 0.6855
0.9345 21.0 4242 0.8533 0.6883
0.9479 22.0 4444 0.8548 0.6907
0.8829 23.0 4646 0.8461 0.6851
0.8999 24.0 4848 0.8399 0.6883
0.9047 25.0 5050 0.8403 0.6973
0.9415 26.0 5252 0.8437 0.6952
0.937 27.0 5454 0.8393 0.6931
0.8692 28.0 5656 0.8331 0.6977
0.9396 29.0 5858 0.8418 0.6973
0.8712 30.0 6060 0.8392 0.6921
0.9426 31.0 6262 0.8324 0.7011
0.884 32.0 6464 0.8325 0.6959
0.8433 33.0 6666 0.8300 0.6987
0.8869 34.0 6868 0.8328 0.6963
0.89 35.0 7070 0.8324 0.6973
0.8639 36.0 7272 0.8317 0.6956
0.8844 37.0 7474 0.8315 0.6970
0.8621 38.0 7676 0.8334 0.6991
0.8942 39.0 7878 0.8350 0.6998
0.8609 40.0 8080 0.8313 0.7011

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0