ABX-AI's picture
Update README.md
3eb93dd verified
metadata
license: other
library_name: transformers
tags:
  - mergekit
  - merge
  - not-for-all-audiences
base_model:
  - Nitral-AI/Infinitely-Laydiculous-7B
model-index:
  - name: Infinite-Laymons-9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.61
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.14
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54.87
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 53.75
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
          name: Open LLM Leaderboard

GGUF / IQ / Imatrix for Infinite-Laymons-9B

image/png

Why Importance Matrix?

Importance Matrix, at least based on my testing, has shown to improve the output and performance of "IQ"-type quantizations, where the compression becomes quite heavy. The Imatrix performs a calibration, using a provided dataset. Testing has shown that semi-randomized data can help perserve more important segments as the compression is applied.

Related discussions in Github: [1] [2]

The imatrix.txt file that I used contains general, semi-random data, with some custom kink.

Infinite-Laymons-9B

Infinite-Laymons-9B is intended for fictional role-play and storytelling.

The focus is on original responses and elimitation, or reduction of refusals.

Merge Details

This is a merge of pre-trained language models created using mergekit.

Merge Method

This model was merged using the passthrough merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: Nitral-AI/Infinitely-Laydiculous-7B
        layer_range: [0, 20]
  - sources:
      - model: ABX-AI/Infinite-Laymons-7B
        layer_range: [12, 32]
merge_method: passthrough
dtype: float16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 67.29
AI2 Reasoning Challenge (25-Shot) 65.61
HellaSwag (10-Shot) 84.14
MMLU (5-Shot) 64.53
TruthfulQA (0-shot) 54.87
Winogrande (5-shot) 80.82
GSM8k (5-shot) 53.75