hamsa-tiny-v0.2 / README.md
Ahmed107's picture
End of training
2e5639e verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - nadsoft/QASR-Speech-Resource
metrics:
  - wer
model-index:
  - name: Whisper Small Arabic
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nadsoft/QASR-Speech-Resource default
          type: nadsoft/QASR-Speech-Resource
        metrics:
          - name: Wer
            type: wer
            value: 42.76086285863452

Whisper Small Arabic

This model is a fine-tuned version of openai/whisper-tiny on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5583
  • Wer: 42.7609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7005 0.2 2000 0.7135 51.5366
0.6267 0.4 4000 0.6309 50.9433
0.5886 0.6 6000 0.5892 50.0225
0.5627 0.8 8000 0.5679 43.9450
0.5694 1.0 10000 0.5583 42.7609

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1.dev0
  • Tokenizers 0.15.1