hussien
End of training
583386c verified
metadata
license: apache-2.0
base_model: facebook/dinov2-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: dinov2-base-finetuned-ct-iq
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1
          - name: F1
            type: f1
            value: 1

dinov2-base-finetuned-ct-iq

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0265 0.9954 162 0.2460 0.9233 0.9295
0.0185 1.9969 325 0.0023 1.0 1.0
0.1076 2.9985 488 0.0204 0.9939 0.9938
0.1424 4.0 651 0.0001 1.0 1.0
0.0002 4.9954 813 0.0013 1.0 1.0
0.0414 5.9969 976 0.0000 1.0 1.0
0.0003 6.9985 1139 0.0003 1.0 1.0
0.0011 8.0 1302 0.0163 0.9969 0.9969
0.0 8.9954 1464 0.0010 1.0 1.0
0.0 9.9539 1620 0.0000 1.0 1.0

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1