|
--- |
|
license: apache-2.0 |
|
base_model: facebook/dinov2-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: dinov2-base-finetuned-ct-iq |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
- name: F1 |
|
type: f1 |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# dinov2-base-finetuned-ct-iq |
|
|
|
This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Accuracy: 1.0 |
|
- F1: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| 0.0265 | 0.9954 | 162 | 0.2460 | 0.9233 | 0.9295 | |
|
| 0.0185 | 1.9969 | 325 | 0.0023 | 1.0 | 1.0 | |
|
| 0.1076 | 2.9985 | 488 | 0.0204 | 0.9939 | 0.9938 | |
|
| 0.1424 | 4.0 | 651 | 0.0001 | 1.0 | 1.0 | |
|
| 0.0002 | 4.9954 | 813 | 0.0013 | 1.0 | 1.0 | |
|
| 0.0414 | 5.9969 | 976 | 0.0000 | 1.0 | 1.0 | |
|
| 0.0003 | 6.9985 | 1139 | 0.0003 | 1.0 | 1.0 | |
|
| 0.0011 | 8.0 | 1302 | 0.0163 | 0.9969 | 0.9969 | |
|
| 0.0 | 8.9954 | 1464 | 0.0010 | 1.0 | 1.0 | |
|
| 0.0 | 9.9539 | 1620 | 0.0000 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|