AliShaker's picture
update model card README.md
31be7d0
|
raw
history blame
5.67 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - wildreceipt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-wildreceipt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wildreceipt
          type: wildreceipt
          config: WildReceipt
          split: train
          args: WildReceipt
        metrics:
          - name: Precision
            type: precision
            value: 0.877962408063198
          - name: Recall
            type: recall
            value: 0.8870235310306867
          - name: F1
            type: f1
            value: 0.8824697104524608
          - name: Accuracy
            type: accuracy
            value: 0.9265109136777449

layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • Precision: 0.8780
  • Recall: 0.8870
  • F1: 0.8825
  • Accuracy: 0.9265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.2240 0.6077 0.3766 0.4650 0.7011
No log 0.63 200 0.8417 0.6440 0.5089 0.5685 0.7743
No log 0.95 300 0.6466 0.7243 0.6583 0.6897 0.8311
No log 1.26 400 0.5516 0.7533 0.7158 0.7341 0.8537
0.9961 1.58 500 0.4845 0.7835 0.7557 0.7693 0.8699
0.9961 1.89 600 0.4506 0.7809 0.7930 0.7869 0.8770
0.9961 2.21 700 0.4230 0.8101 0.8107 0.8104 0.8886
0.9961 2.52 800 0.3797 0.8211 0.8296 0.8253 0.8983
0.9961 2.84 900 0.3576 0.8289 0.8411 0.8349 0.9016
0.4076 3.15 1000 0.3430 0.8394 0.8371 0.8382 0.9055
0.4076 3.47 1100 0.3354 0.8531 0.8405 0.8467 0.9071
0.4076 3.79 1200 0.3331 0.8371 0.8504 0.8437 0.9076
0.4076 4.1 1300 0.3184 0.8445 0.8609 0.8526 0.9118
0.4076 4.42 1400 0.3087 0.8617 0.8580 0.8598 0.9150
0.2673 4.73 1500 0.3013 0.8613 0.8657 0.8635 0.9177
0.2673 5.05 1600 0.2971 0.8630 0.8689 0.8659 0.9181
0.2673 5.36 1700 0.3075 0.8675 0.8639 0.8657 0.9177
0.2673 5.68 1800 0.2989 0.8551 0.8764 0.8656 0.9193
0.2673 5.99 1900 0.3011 0.8572 0.8762 0.8666 0.9194
0.2026 6.31 2000 0.3107 0.8595 0.8722 0.8658 0.9181
0.2026 6.62 2100 0.3050 0.8678 0.8800 0.8739 0.9220
0.2026 6.94 2200 0.2971 0.8722 0.8789 0.8755 0.9237
0.2026 7.26 2300 0.3057 0.8666 0.8785 0.8725 0.9209
0.2026 7.57 2400 0.3172 0.8593 0.8773 0.8682 0.9184
0.1647 7.89 2500 0.3018 0.8695 0.8823 0.8759 0.9228
0.1647 8.2 2600 0.3001 0.8760 0.8795 0.8777 0.9256
0.1647 8.52 2700 0.3068 0.8758 0.8745 0.8752 0.9235
0.1647 8.83 2800 0.3007 0.8779 0.8779 0.8779 0.9248
0.1647 9.15 2900 0.3063 0.8740 0.8763 0.8751 0.9228
0.1342 9.46 3000 0.3096 0.8675 0.8834 0.8754 0.9235
0.1342 9.78 3100 0.3052 0.8736 0.8848 0.8792 0.9249
0.1342 10.09 3200 0.3120 0.8727 0.8885 0.8805 0.9252
0.1342 10.41 3300 0.3146 0.8718 0.8843 0.8780 0.9243
0.1342 10.73 3400 0.3124 0.8720 0.8880 0.8799 0.9253
0.117 11.04 3500 0.3088 0.8761 0.8817 0.8789 0.9252
0.117 11.36 3600 0.3082 0.8782 0.8834 0.8808 0.9257
0.117 11.67 3700 0.3129 0.8767 0.8847 0.8807 0.9256
0.117 11.99 3800 0.3116 0.8792 0.8847 0.8820 0.9265
0.117 12.3 3900 0.3142 0.8768 0.8874 0.8821 0.9261
0.1022 12.62 4000 0.3129 0.8780 0.8870 0.8825 0.9265

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1