bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0612
- Precision: 0.9329
- Recall: 0.9517
- F1: 0.9422
- Accuracy: 0.9863
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0904 | 1.0 | 1756 | 0.0686 | 0.9227 | 0.9355 | 0.9291 | 0.9820 |
0.0385 | 2.0 | 3512 | 0.0586 | 0.9381 | 0.9490 | 0.9435 | 0.9862 |
0.0215 | 3.0 | 5268 | 0.0612 | 0.9329 | 0.9517 | 0.9422 | 0.9863 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 111
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train Buntan/bert-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.933
- Recall on conll2003self-reported0.952
- F1 on conll2003self-reported0.942
- Accuracy on conll2003self-reported0.986