metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9328604420983174
- name: Recall
type: recall
value: 0.9516997643890945
- name: F1
type: f1
value: 0.9421859380206598
- name: Accuracy
type: accuracy
value: 0.986342497203744
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0612
- Precision: 0.9329
- Recall: 0.9517
- F1: 0.9422
- Accuracy: 0.9863
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0904 | 1.0 | 1756 | 0.0686 | 0.9227 | 0.9355 | 0.9291 | 0.9820 |
0.0385 | 2.0 | 3512 | 0.0586 | 0.9381 | 0.9490 | 0.9435 | 0.9862 |
0.0215 | 3.0 | 5268 | 0.0612 | 0.9329 | 0.9517 | 0.9422 | 0.9863 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3