beit-base / README.md
ChasingMercer's picture
update model card README.md
7e9bfa9
|
raw
history blame
1.9 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - cats_vs_dogs
metrics:
  - accuracy
model-index:
  - name: beit-base
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: cats_vs_dogs
          type: cats_vs_dogs
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9976505766766339

beit-base

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the cats_vs_dogs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0116
  • Accuracy: 0.9977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0303 1.0 585 0.0186 0.9942
0.0374 2.0 1170 0.0150 0.9955
0.0559 3.0 1755 0.0116 0.9977

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2