|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v2 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: test |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7704421562689279 |
|
- name: Recall |
|
type: recall |
|
value: 0.7695099818511797 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7699757869249395 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9434371807967313 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v2 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2829 |
|
- Precision: 0.7704 |
|
- Recall: 0.7695 |
|
- F1: 0.7700 |
|
- Accuracy: 0.9434 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.4835 | 0.5191 | 0.3037 | 0.3832 | 0.8719 | |
|
| 0.5738 | 2.0 | 522 | 0.3454 | 0.7288 | 0.5203 | 0.6071 | 0.9117 | |
|
| 0.5738 | 3.0 | 783 | 0.2956 | 0.7752 | 0.6612 | 0.7137 | 0.9235 | |
|
| 0.2549 | 4.0 | 1044 | 0.2791 | 0.7537 | 0.6848 | 0.7176 | 0.9258 | |
|
| 0.2549 | 5.0 | 1305 | 0.2801 | 0.7530 | 0.7211 | 0.7367 | 0.9335 | |
|
| 0.1566 | 6.0 | 1566 | 0.2675 | 0.7956 | 0.7229 | 0.7575 | 0.9393 | |
|
| 0.1566 | 7.0 | 1827 | 0.2610 | 0.7744 | 0.7350 | 0.7542 | 0.9423 | |
|
| 0.1054 | 8.0 | 2088 | 0.2731 | 0.7614 | 0.7586 | 0.7600 | 0.9423 | |
|
| 0.1054 | 9.0 | 2349 | 0.2763 | 0.7794 | 0.7526 | 0.7658 | 0.9434 | |
|
| 0.0771 | 10.0 | 2610 | 0.2829 | 0.7704 | 0.7695 | 0.7700 | 0.9434 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |
|
|