DeBERTa-v3-AttackER / README.md
Cyber-ThreaD's picture
Update README.md
2380934 verified
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: AttackER
    results: []

Cyber-ThreaD/DeBERTa-v3-AttackER

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5468
  • Precision: 0.4730
  • Recall: 0.5569
  • F1: 0.5115
  • Accuracy: 0.7401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.7886 0.4 500 1.5075 0.1842 0.2103 0.1964 0.6169
1.3644 0.81 1000 1.3342 0.2364 0.3056 0.2666 0.6492
1.1181 1.21 1500 1.2655 0.2959 0.3585 0.3242 0.6812
0.9833 1.61 2000 1.2368 0.2941 0.3902 0.3354 0.6778
0.9036 2.01 2500 1.2682 0.3551 0.4021 0.3772 0.7023
0.7102 2.42 3000 1.2176 0.3668 0.4590 0.4078 0.7159
0.6868 2.82 3500 1.2170 0.3794 0.4683 0.4192 0.7147
0.5671 3.22 4000 1.2603 0.3951 0.4881 0.4367 0.7259
0.4878 3.63 4500 1.2460 0.3925 0.5093 0.4433 0.7333
0.4942 4.03 5000 1.3147 0.4047 0.4802 0.4392 0.7284
0.3812 4.43 5500 1.3308 0.4205 0.5146 0.4628 0.7351
0.421 4.83 6000 1.3031 0.4275 0.5225 0.4702 0.7386
0.3157 5.24 6500 1.3943 0.4132 0.5040 0.4541 0.7293
0.3072 5.64 7000 1.4087 0.4303 0.5185 0.4703 0.7396
0.3436 6.04 7500 1.4197 0.4461 0.5251 0.4824 0.7363
0.2774 6.45 8000 1.4249 0.4275 0.5225 0.4702 0.7377
0.2629 6.85 8500 1.4811 0.4580 0.5344 0.4933 0.7327
0.2271 7.25 9000 1.5576 0.4733 0.5397 0.5043 0.7415
0.235 7.66 9500 1.5468 0.4730 0.5569 0.5115 0.7401
0.2415 8.06 10000 1.5956 0.4730 0.5437 0.5058 0.7433
0.1826 8.46 10500 1.6168 0.4455 0.5410 0.4886 0.7413
0.2083 8.86 11000 1.5866 0.4505 0.5423 0.4922 0.7413
0.2169 9.27 11500 1.5974 0.4708 0.5437 0.5046 0.7468
0.1747 9.67 12000 1.6219 0.4567 0.5437 0.4964 0.7405

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Citing & Authors

If you use the model kindly cite the following work

@inproceedings{deka2024attacker,
  title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
  author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
  booktitle={International Conference on Web Information Systems Engineering},
  pages={255--270},
  year={2024},
  organization={Springer}
}