Dev372's picture
End of training
1a9ec52 verified
metadata
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
metrics:
  - wer
model-index:
  - name: English Whisper Model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical
          type: Dev372/Medical_STT_Dataset_1.1
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 6.5482216924132075

English Whisper Model

This model is a fine-tuned version of openai/whisper-tiny.en on the Medical dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1566
  • Wer: 6.5482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 18
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8857 0.1554 55 1.6694 13.1520
1.3264 0.3107 110 1.0577 11.8358
0.9159 0.4661 165 0.8809 10.3857
0.8292 0.6215 220 0.7654 9.8893
0.641 0.7768 275 0.6364 9.2557
0.5445 0.9322 330 0.4931 8.6417
0.4072 1.0876 385 0.3397 8.2759
0.2378 1.2429 440 0.2414 8.1322
0.2109 1.3983 495 0.2116 7.6684
0.1641 1.5537 550 0.1940 7.6423
0.1498 1.7090 605 0.1819 7.1198
0.1445 1.8644 660 0.1752 6.8095
0.1349 2.0198 715 0.1679 6.7181
0.1032 2.1751 770 0.1661 6.7344
0.0898 2.3305 825 0.1632 6.8291
0.1032 2.4859 880 0.1606 6.7278
0.0845 2.6412 935 0.1592 6.7083
0.0958 2.7966 990 0.1578 6.5743
0.097 2.9520 1045 0.1570 6.5515
0.0689 3.1073 1100 0.1566 6.5482

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1