|
--- |
|
base_model: microsoft/Phi-3-mini-128k-instruct |
|
library_name: peft |
|
license: mit |
|
tags: |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
model-index: |
|
- name: PairRM-V2-phi3-3-mini-unified-feedback |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dongfu/huggingface/runs/336nlkkc) |
|
# PairRM-V2-phi3-3-mini-unified-feedback |
|
|
|
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the all dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2755 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.3099 | 0.3245 | 500 | 0.3066 | |
|
| 0.3073 | 0.6490 | 1000 | 0.2901 | |
|
| 0.263 | 0.9736 | 1500 | 0.2846 | |
|
| 0.2822 | 1.2981 | 2000 | 0.2831 | |
|
| 0.2693 | 1.6226 | 2500 | 0.2787 | |
|
| 0.2741 | 1.9471 | 3000 | 0.2778 | |
|
| 0.2869 | 2.2716 | 3500 | 0.2762 | |
|
| 0.2339 | 2.5961 | 4000 | 0.2756 | |
|
| 0.2879 | 2.9207 | 4500 | 0.2755 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.43.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |