DongfuJiang's picture
Training in progress, step 400
2511e8e verified
---
base_model: microsoft/Phi-3-mini-128k-instruct
library_name: peft
license: mit
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: PairRM-V2-phi3-3-mini-unified-feedback
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dongfu/huggingface/runs/336nlkkc)
# PairRM-V2-phi3-3-mini-unified-feedback
This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the all dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3099 | 0.3245 | 500 | 0.3066 |
| 0.3073 | 0.6490 | 1000 | 0.2901 |
| 0.263 | 0.9736 | 1500 | 0.2846 |
| 0.2822 | 1.2981 | 2000 | 0.2831 |
| 0.2693 | 1.6226 | 2500 | 0.2787 |
| 0.2741 | 1.9471 | 3000 | 0.2778 |
| 0.2869 | 2.2716 | 3500 | 0.2762 |
| 0.2339 | 2.5961 | 4000 | 0.2756 |
| 0.2879 | 2.9207 | 4500 | 0.2755 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.43.1
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1