Ubiquant_CharacterHunter / search_old.py
Facepalm0's picture
Upload search_old.py with huggingface_hub
a821f69 verified
import numpy as np
import itertools
import random
from make_env import GridWorldEnv
from concurrent.futures import ProcessPoolExecutor
class Algorithm_Agent():
def __init__(self, num_categories, grid_size, grid, loc):
self.num_categories = num_categories
self.grid_size = grid_size
self.grid = grid
self.current_loc = [loc[0], loc[1]]
self.path, self.path_category = self.arrange_points()
# print('Path generated.')
self.actions = self.plan_action()
# print('Actions generated.')
def calculate_length(self, path, category_path, elim_path):
lengths = np.sum(np.abs(np.array(path[:-1]) - np.array(path[1:])), axis=1)
motion_length = np.sum(lengths) # motion path
cum_lengths = np.cumsum(lengths)[::-1] / 14.4 # cumulative length
load_length = np.sum(cum_lengths) - 4 * np.sum(np.array(cum_lengths) * np.array(elim_path[:-1]))
return motion_length + load_length
def get_elim_path(self, category_path):
elim_path = [0] * len(category_path)
for i in range(len(category_path)):
if i > 0:
previous_caterogy_path = category_path[:i]
# 统计previous_caterogy_path中,与category_path[i]同一类别的元素的个数
same_category_count = previous_caterogy_path.count(category_path[i])
if (same_category_count + 1) % 4 == 0 and same_category_count != 0:
elim_path[i] = 1
return elim_path
def find_shortest_path(self, points):
min_path = None
min_length = float('inf')
for perm in itertools.permutations(points):
perm = np.array(perm) # 转换为numpy数组
# 简化计算方式
diffs = np.abs(perm[1:] - perm[:-1])
length = np.sum(diffs)
if length < min_length:
min_length = length
min_path = perm.tolist()
return min_path, min_length
def insert_point(self, path, category_path, elim_path, point, category):
min_length = float('inf')
best_position = None
for i in range(len(path) + 1):
new_path, new_category_path = path.copy(), category_path.copy()
new_path.insert(i, point)
new_category_path.insert(i, category)
new_elim_path = self.get_elim_path(new_category_path)
if len(new_path) > 12:
a=1
length = self.calculate_length(new_path, new_category_path, new_elim_path)
if length < min_length:
min_length = length
best_position = i
return best_position
def try_single_optimization(self, args):
"""
将函数改造为接收单个参数的形式,便于进程池调用
"""
path, category_path = args
path = path.copy()
category_path = category_path.copy()
# 随机选择一个点
index = random.randint(0, len(path) - 1)
point = path.pop(index)
category = category_path.pop(index)
# 尝试重新插入
elim_path = self.get_elim_path(category_path)
position = self.insert_point(path, category_path, elim_path, point, category)
# 插入到最优位置
path.insert(position, point)
category_path.insert(position, category)
return (path, category_path,
self.calculate_length(path, category_path, self.get_elim_path(category_path)))
def optimize_path_parallel(self, initial_path, initial_category_path, num_iterations=1000):
"""
新增的并行优化函数
"""
chunk_size = 125
num_processes = num_iterations // chunk_size
# 准备参数
args_list = [(initial_path.copy(), initial_category_path.copy())
for _ in range(num_iterations)]
best_path, best_category_path = initial_path.copy(), initial_category_path.copy()
best_length = float('inf')
# 使用进程池
with ProcessPoolExecutor(max_workers=num_processes) as executor:
# 并行执行优化
results = list(executor.map(self.try_single_optimization,
args_list,
chunksize=chunk_size))
# 找出最佳结果
for path, category_path, length in results:
if length < best_length:
best_length = length
best_path = path
best_category_path = category_path
return best_path, best_category_path
def arrange_points(self):
points_by_category = {i: [] for i in random.sample(range(self.num_categories), self.num_categories)} # Group points by category
for x in range(self.grid_size[0]):
for y in range(self.grid_size[1]):
category = self.grid[x, y]
if category != -1:
points_by_category[category].append([x, y]) # Store the position of the item
path = [] # Initialize the path
category_path = []
for category, points in points_by_category.items(): # Process each category
while points: # Process all points in the category
if len(points) >= 4: # If there are at least 4 points, find the shortest path for the first 4 points
subset = points[:4]
points = points[4:]
else:
subset = points
points = []
if len(path) == 0: # If the path has only the loc, find the shortest path for the subset
path, _ = self.find_shortest_path(subset)
category_path = [category] * len(path)
else:
for point in subset:
elim_path = self.get_elim_path(category_path)
position = self.insert_point(path, category_path, elim_path, point, category)
path.insert(position, point)
category_path.insert(position, category)
# print(f'category: {category}, category_path: {category_path}\n')
# # 排列好第一轮后,再次调整顺序
# # 从序列中随机剔除一个元素,然后插入到其他位置,使得路径长度最短
# for i in range(1000):
# index = random.randint(0, len(path) - 1)
# point = path.pop(index)
# category = category_path.pop(index)
# elim_path = self.get_elim_path(category_path)
# position = self.insert_point(path, category_path, elim_path, point, category)
# path.insert(position, point)
# category_path.insert(position, category)
# 使用并行优化替换原来的循环
path, category_path = self.optimize_path_parallel(path, category_path)
return path, category_path
def plan_action(self):
actions = []
for i in range(len(self.path)):
while self.current_loc[0] != self.path[i][0] or self.current_loc[1] != self.path[i][1]:
if self.current_loc[0] < self.path[i][0]:
actions.append(0)
self.current_loc = [self.current_loc[0] + 1, self.current_loc[1]]
elif self.current_loc[1] < self.path[i][1]:
actions.append(1)
self.current_loc = [self.current_loc[0], self.current_loc[1] + 1]
elif self.current_loc[0] > self.path[i][0]:
actions.append(2)
self.current_loc = [self.current_loc[0] - 1, self.current_loc[1]]
else:
actions.append(3)
self.current_loc = [self.current_loc[0], self.current_loc[1] - 1]
actions.append(4)
# print(f'actions: {actions}\n')
return actions
def search(grid, loc, pred_grid, pred_loc, num_iterations=30):
env = GridWorldEnv()
optim_actions, optim_reward = None, 0
for i in range(num_iterations):
env.reset()
env.grid, env.loc = grid.copy(), loc.copy()
agent = Algorithm_Agent(env.num_categories, env.grid_size, pred_grid, pred_loc)
cumulated_reward = 0
for action in agent.actions:
obs, reward, done, truncated, info = env.step(action)
cumulated_reward += reward
if cumulated_reward > optim_reward:
optim_actions, optim_reward = agent.actions, cumulated_reward
print(f'{i}:', cumulated_reward)
print(f'Optim reward: {optim_reward}')
return optim_actions
if __name__ == "__main__":
for _ in range(20):
test_env = GridWorldEnv()
test_env.reset()
grid, loc = test_env.grid.copy(), test_env.loc.copy()
pred_grid, pred_loc = test_env.grid.copy(), test_env.loc.copy()
loc_1, loc_2, loc_3, loc_4, loc_5 = random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2), random.sample(range(12), 2)
a, b, c, d, e = pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]]
pred_grid[loc_1[0], loc_1[1]], pred_grid[loc_2[0], loc_2[1]], pred_grid[loc_3[0], loc_3[1]], pred_grid[loc_4[0], loc_4[1]], pred_grid[loc_5[0], loc_5[1]] = b, e, a, c, d
search(grid, loc, pred_grid, pred_loc) # 使用5格混淆的grid进行搜索