|
--- |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-uncased-finetuned-ner-lenerBr |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: validation |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7845931433292028 |
|
- name: Recall |
|
type: recall |
|
value: 0.7810444078947368 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7828147537605605 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9671762427683093 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased-finetuned-ner-lenerBr |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1555 |
|
- Precision: 0.7846 |
|
- Recall: 0.7810 |
|
- F1: 0.7828 |
|
- Accuracy: 0.9672 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 490 | 0.1861 | 0.6380 | 0.6661 | 0.6518 | 0.9446 | |
|
| 0.2629 | 2.0 | 980 | 0.1618 | 0.7063 | 0.7303 | 0.7181 | 0.9537 | |
|
| 0.0756 | 3.0 | 1470 | 0.1299 | 0.7299 | 0.8010 | 0.7638 | 0.9645 | |
|
| 0.0443 | 4.0 | 1960 | 0.1422 | 0.7634 | 0.7708 | 0.7671 | 0.9643 | |
|
| 0.0279 | 5.0 | 2450 | 0.1508 | 0.7870 | 0.7679 | 0.7773 | 0.9648 | |
|
| 0.0203 | 6.0 | 2940 | 0.1457 | 0.7693 | 0.7815 | 0.7753 | 0.9681 | |
|
| 0.0143 | 7.0 | 3430 | 0.1508 | 0.7767 | 0.7714 | 0.7740 | 0.9663 | |
|
| 0.0105 | 8.0 | 3920 | 0.1537 | 0.7812 | 0.7669 | 0.7739 | 0.9671 | |
|
| 0.0085 | 9.0 | 4410 | 0.1564 | 0.7809 | 0.7681 | 0.7745 | 0.9669 | |
|
| 0.0064 | 10.0 | 4900 | 0.1555 | 0.7846 | 0.7810 | 0.7828 | 0.9672 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|