|
--- |
|
library_name: transformers |
|
tags: |
|
- unsloth |
|
license: apache-2.0 |
|
datasets: |
|
- llm-jp/magpie-sft-v1.0 |
|
language: |
|
- ja |
|
base_model: |
|
- google/gemma-2-9b |
|
--- |
|
|
|
### Uploaded model |
|
- **Developed by:** [Hizaneko] |
|
- **License:** [apache-2.0] |
|
- **Finetuned from model:** [google/gemma-2-9b] |
|
|
|
## Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。 |
|
|
|
## Uses |
|
%%capture |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install -U torch |
|
!pip install -U peft |
|
|
|
from unsloth import FastLanguageModel |
|
from peft import PeftModel |
|
import torch |
|
import json |
|
from tqdm import tqdm |
|
import re |
|
|
|
from google.colab import userdata |
|
HF_TOKEN=userdata.get('HF_TOKEN') |
|
|
|
### ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。 |
|
### HFからモデルリポジトリをダウンロード |
|
!huggingface-cli login --token $HF_TOKEN |
|
!huggingface-cli download google/gemma-2-9b --local-dir gemma-2-9b/ |
|
model_id = "./gemma-2-9b" |
|
adapter_id = "Hizaneko/gemma-2-9b-nyan100" |
|
|
|
### unslothのFastLanguageModelで元のモデルをロード。 |
|
dtype = None |
|
load_in_4bit = True |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name=model_id, |
|
dtype=dtype, |
|
load_in_4bit=load_in_4bit, |
|
trust_remote_code=True, |
|
) |
|
|
|
# 元のモデルにLoRAのアダプタを統合。 |
|
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) |
|
|
|
# 事前にデータをアップロードしてください。 |
|
datasets = [] |
|
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
### 推論するためにモデルのモードを変更 |
|
FastLanguageModel.for_inference(model) |
|
|
|
results = [] |
|
for dt in tqdm(datasets): |
|
input = dt["input"] |
|
|
|
prompt = f"""### 指示\n{input} 簡潔に回答してください \n### 回答\n""" |
|
|
|
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) |
|
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] |
|
|
|
results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) |
|
|
|
### 結果をjsonlで保存。 |
|
json_file_id = re.sub(".*/", "", adapter_id) |
|
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |