metadata
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
datasets:
- offenseval_2020
metrics:
- accuracy
model-index:
- name: ArabertHateSpeech
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: offenseval_2020
type: offenseval_2020
config: ar
split: test
args: ar
metrics:
- name: Accuracy
type: accuracy
value: 0.9255610290093049
ArabertHateSpeech
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the offenseval_2020 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3259
- Accuracy: 0.9256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1895 | 1.0 | 980 | 0.4345 | 0.9206 |
0.1472 | 2.0 | 1960 | 0.3537 | 0.9228 |
0.1365 | 3.0 | 2940 | 0.3259 | 0.9256 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3