File size: 19,710 Bytes
dae45d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
# Copyright 2025 EO-Robotics Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import Any

import torch
import torch.nn as nn
import torch.nn.functional as F  # noqa: N812
from torch import Tensor
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_eo1 import EO1VisionFlowMatchingConfig
from .modeling_qwen2_5_vl import Qwen2_5_VLForConditionalGeneration

logger = logging.get_logger(__name__)


def create_sinusoidal_pos_embedding(
    time: torch.tensor,
    dimension: int,
    min_period: float = 4e-3,
    max_period: float = 4.0,
    device="cpu",
) -> Tensor:
    """Computes sine-cosine positional embedding vectors for scalar positions."""
    if dimension % 2 != 0:
        raise ValueError(f"dimension ({dimension}) must be divisible by 2")

    if time.ndim != 1:
        raise ValueError("The time tensor is expected to be of shape `(batch_size, )`.")

    fraction = torch.linspace(0.0, 1.0, dimension // 2, device=device)
    period = min_period * (max_period / min_period) ** fraction

    scaling_factor = 1.0 / period * 2 * math.pi
    sin_input = scaling_factor[None, :] * time[:, None]
    pos_emb = torch.cat([torch.sin(sin_input), torch.cos(sin_input)], dim=1)
    return pos_emb


@dataclass
class EO1VisionFlowMatchingOutputWithPast(ModelOutput):
    loss: torch.FloatTensor | None = None
    fm_loss: torch.FloatTensor | None = None
    ar_loss: torch.FloatTensor | None = None

    actions: torch.FloatTensor | None = None
    logits: torch.FloatTensor | None = None

    past_key_values: list[torch.FloatTensor] | None = None
    hidden_states: tuple[torch.FloatTensor] | None = None
    attentions: tuple[torch.FloatTensor] | None = None
    rope_deltas: torch.LongTensor | None = None


class EO1VisionActionProjector(torch.nn.Sequential):
    """This block implements the multi-layer perceptron (MLP) module."""

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_layers: int = 2,
        activation_layer: str = "linear",
        bias: bool = True,
        device: Any = None,
        dtype: torch.dtype = torch.float32,
    ):
        layers = []
        in_dim = in_channels
        hidden_channels = [in_dim] * (num_layers - 1) + [out_channels]
        for hidden_dim in hidden_channels[:-1]:
            layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device))
            layers.append(ACT2FN[activation_layer])
            in_dim = hidden_dim
        layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias, dtype=dtype, device=device))
        super().__init__(*layers)

    @property
    def dtype(self):
        return self[0].weight.dtype


class EO1VisionFlowMatchingModel(PreTrainedModel, GenerationMixin):
    config_class = EO1VisionFlowMatchingConfig
    supports_gradient_checkpointing = True

    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_attention_backend = True
    _can_compile_fullgraph = True
    _skip_keys_device_placement = "past_key_values"

    def __init__(
        self,
        config: EO1VisionFlowMatchingConfig,
        vlm_backbone: Qwen2_5_VLForConditionalGeneration = None,
    ):
        super().__init__(config)

        hidden_size = self.config.text_config.hidden_size
        max_action_dim = self.config.max_action_dim
        self.vlm_backbone = vlm_backbone or Qwen2_5_VLForConditionalGeneration(self.config)
        self.state_proj = nn.Linear(max_action_dim, hidden_size)
        self.action_in_proj = nn.Linear(max_action_dim, hidden_size)
        self.action_out_proj = EO1VisionActionProjector(
            hidden_size,
            max_action_dim,
            self.config.num_action_layers,
            self.config.action_act,
        )
        self.action_time_mlp_in = nn.Linear(hidden_size * 2, hidden_size)
        self.action_time_mlp_out = nn.Linear(hidden_size, hidden_size)

        self.post_init()
        self.to_float32_flow_matching_head()

    def get_input_embeddings(self):
        return self.vlm_backbone.get_input_embeddings()

    def to_float32_flow_matching_head(self):
        self.action_out_proj = self.action_out_proj.to(dtype=torch.float32)
        self.action_time_mlp_in = self.action_time_mlp_in.to(dtype=torch.float32)
        self.action_time_mlp_out = self.action_time_mlp_out.to(dtype=torch.float32)
        self.state_proj = self.state_proj.to(dtype=torch.float32)
        self.action_in_proj = self.action_in_proj.to(dtype=torch.float32)

    def sample_noise(self, shape, device):
        noise = torch.normal(
            mean=0.0,
            std=1.0,
            size=shape,
            dtype=torch.float32,
            device=device,
        )
        return noise

    def sample_time(self, bsize, device):
        beta_dist = torch.distributions.Beta(concentration1=1.5, concentration0=1.0)
        time_beta = beta_dist.sample((bsize,)).to(device=device, dtype=torch.float32)
        time = time_beta * 0.999 + 0.001
        return time

    def replace_special_embeddings(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor,
        special_features: torch.FloatTensor = None,
        special_token_ids: torch.LongTensor = None,
    ) -> torch.LongTensor:
        """Replace the special embeddings with the special features."""
        if special_features is not None and special_token_ids is not None:
            n_special_tokens = (input_ids == special_token_ids).sum().item()
            n_special_features = special_features.shape[0]
            assert n_special_tokens == n_special_features, (
                f"Special features and special tokens {special_token_ids} do not match: \
                tokens: {n_special_tokens}, features {n_special_features}"
            )
            mask = input_ids == special_token_ids
            mask_unsqueezed = mask.unsqueeze(-1)
            mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
            special_mask = mask_expanded.to(inputs_embeds.device)
            special_features = special_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_mask, special_features)
        return inputs_embeds, None

    def embed_prefix(
        self,
        input_ids: torch.LongTensor,
        inputs_embeds: torch.FloatTensor | None = None,
        pixel_values: torch.Tensor | None = None,
        pixel_values_videos: torch.FloatTensor | None = None,
        image_grid_thw: torch.LongTensor | None = None,
        video_grid_thw: torch.LongTensor | None = None,
        states: torch.Tensor | None = None,
    ) -> tuple[torch.FloatTensor, torch.Tensor, torch.Tensor]:
        """Embed the suffix"""
        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(input_ids)

        if pixel_values is not None:
            image_embeds = self.vlm_backbone.get_image_features(pixel_values, image_grid_thw)
            image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            image_mask, _ = self.vlm_backbone.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

        if pixel_values_videos is not None:
            video_embeds = self.vlm_backbone.get_video_features(pixel_values_videos, video_grid_thw)
            video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
            _, video_mask = self.vlm_backbone.get_placeholder_mask(
                input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
            )
            inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

        if states is not None:
            states = states.type(self.state_proj.weight.dtype)
            state_embs = self.state_proj(states)
            inputs_embeds, _ = self.replace_special_embeddings(
                input_ids, inputs_embeds, state_embs, self.config.state_token_id
            )
        return inputs_embeds

    def embed_suffix(
        self,
        timestep: torch.Tensor,
        noisy_actions: torch.Tensor,
    ) -> torch.FloatTensor:
        """Embed the suffix"""
        time_embs = create_sinusoidal_pos_embedding(
            timestep,
            self.config.text_config.hidden_size,
            device=noisy_actions.device,
        )
        time_embs = time_embs.type(noisy_actions.dtype)
        noisy_actions = noisy_actions.type(self.action_in_proj.weight.dtype)
        action_embs = self.action_in_proj(noisy_actions)
        time_embs = time_embs[:, None, :].expand_as(action_embs)

        action_time_embs = torch.cat([action_embs, time_embs], dim=2)
        action_time_embs = self.action_time_mlp_in(action_time_embs)
        action_time_embs = F.silu(action_time_embs)
        action_time_embs = self.action_time_mlp_out(action_time_embs)
        return action_time_embs

    def forward(
        self,
        input_ids: torch.LongTensor | None = None,
        attention_mask: torch.Tensor | None = None,
        position_ids: torch.LongTensor | None = None,
        past_key_values: list[torch.FloatTensor] | None = None,
        inputs_embeds: torch.FloatTensor | None = None,
        labels: torch.LongTensor | None = None,
        use_cache: bool | None = None,
        output_attentions: bool | None = None,
        output_hidden_states: bool | None = None,
        pixel_values: torch.Tensor | None = None,
        pixel_values_videos: torch.FloatTensor | None = None,
        image_grid_thw: torch.LongTensor | None = None,
        video_grid_thw: torch.LongTensor | None = None,
        rope_deltas: torch.LongTensor | None = None,
        cache_position: torch.LongTensor | None = None,
        second_per_grid_ts: torch.Tensor | None = None,
        logits_to_keep: int | torch.Tensor = 0,
        states: torch.Tensor | None = None,
        actions: torch.Tensor | None = None,
        action_is_pad: torch.Tensor | None = None,
        **kwargs,
    ) -> EO1VisionFlowMatchingOutputWithPast:
        """multi-modal forward pass, including image, video, state, action, and language."""

        inputs_embeds = self.embed_prefix(
            input_ids,
            inputs_embeds,
            pixel_values,
            pixel_values_videos,
            image_grid_thw,
            video_grid_thw,
            states,
        )

        if actions is not None:
            noise_mask = input_ids == self.config.action_token_id
            pass_mask = input_ids == self.config.action_pass_id
            mask = noise_mask | pass_mask  # (b s)

            pass_mask_in_action = pass_mask[mask]  # (n, )
            pass_mask_in_action = pass_mask_in_action.reshape(*actions.shape[:2], 1)  # (b, h, 1)

            time = self.sample_time(actions.shape[0], inputs_embeds.device)  # (n,)
            time_expanded = time[:, None, None].repeat(1, actions.shape[1], 1)  # (b, h, 1)
            time_expanded[pass_mask_in_action] = 0.0

            noise = self.sample_noise(actions.shape, inputs_embeds.device)
            x_t = time_expanded * noise + (1 - time_expanded) * actions
            u_t = noise - actions

            action_time_embs = self.embed_suffix(time, x_t)
            mask_unsqueezed = mask.unsqueeze(-1)
            mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
            action_mask = mask_expanded.to(inputs_embeds.device)

            action_time_embs = action_time_embs.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(action_mask, action_time_embs)

        if attention_mask is not None:
            attention_mask = attention_mask.to(inputs_embeds.device)

        if position_ids is None:
            prefill_noncompiled_stage = (cache_position is not None and cache_position[0] == 0) or (
                past_key_values is None or past_key_values.get_seq_length() == 0
            )
            if prefill_noncompiled_stage or self.vlm_backbone.rope_deltas is None:
                position_ids, rope_deltas = self.vlm_backbone.get_rope_index(
                    input_ids,
                    image_grid_thw,
                    video_grid_thw,
                    second_per_grid_ts=second_per_grid_ts,
                    attention_mask=attention_mask,
                )
                self.vlm_backbone.rope_deltas = rope_deltas
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, 1, -1).expand(3, batch_size, -1)
                if cache_position is not None:
                    delta = (cache_position[0] + self.vlm_backbone.rope_deltas).to(inputs_embeds.device)
                else:
                    delta = torch.zeros((batch_size, seq_length), device=inputs_embeds.device)
                delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=1)
                position_ids += delta.to(position_ids.device)

        # generation
        output_actions = None
        if not (self.training or states is None):
            output_actions, outputs = self.sample_actions(
                input_ids=input_ids,
                position_ids=position_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                cache_position=cache_position,
                states=states,
            )
        else:
            outputs = self.vlm_backbone.model(
                position_ids=position_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=True,
                cache_position=cache_position,
            )

        hidden_states = outputs[0]

        # only compute necessary logits, do not upcast to float if not computing loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.vlm_backbone.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        fm_loss = None
        v_t = None
        if actions is not None:
            action_time_embs = hidden_states[action_mask[..., 0]]
            action_time_embs = action_time_embs.type(self.action_out_proj.dtype)

            v_t = self.action_out_proj(action_time_embs)
            u_t = u_t.reshape(v_t.shape)
            v_t = v_t.type(u_t.dtype)

            losses = F.mse_loss(u_t, v_t, reduction="none")
            if action_is_pad is not None:
                in_episode_bound = (~action_is_pad).reshape(-1, 1)
                losses = losses * in_episode_bound

            in_denoise_bound = (~pass_mask_in_action).reshape(-1, 1)
            losses = losses * in_denoise_bound

            fm_loss = losses.mean()
            loss = fm_loss

        ar_loss = None
        if labels is not None:
            ar_loss = self.vlm_backbone.loss_function(
                logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
            )
            loss = loss + ar_loss if loss is not None else ar_loss

        return EO1VisionFlowMatchingOutputWithPast(
            loss=loss,
            fm_loss=fm_loss,
            ar_loss=ar_loss,
            actions=output_actions,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.vlm_backbone.rope_deltas,
        )

    @torch.no_grad()
    def sample_actions(
        self,
        input_ids: torch.LongTensor | None = None,
        attention_mask: torch.Tensor | None = None,
        pixel_values: torch.Tensor | None = None,
        image_grid_thw: torch.LongTensor | None = None,
        states: torch.Tensor | None = None,
        **kwargs,
    ) -> Tensor:
        """Sample actions from the model."""

        # prepare position_ids and kv_cache
        position_ids, _ = self.vlm_backbone.get_rope_index(
            input_ids,
            image_grid_thw=image_grid_thw,
            attention_mask=attention_mask,
        )

        # embed prefix
        inputs_embeds = self.embed_prefix(
            input_ids,
            pixel_values=pixel_values,
            image_grid_thw=image_grid_thw,
            states=states,
        )

        # pass prefix, update kvcache
        seq_len = input_ids.shape[-1]
        chunk_size = self.config.action_chunk_size
        suffix_len = -1  # <|im_end|>
        prefix_len = seq_len - chunk_size - 1

        outputs = self.vlm_backbone.model(
            position_ids=position_ids[..., :prefix_len],
            attention_mask=attention_mask[:, :prefix_len],
            inputs_embeds=inputs_embeds[:, :prefix_len],
            use_cache=True,
        )

        # denoising
        device = states.device
        actions_shape = (states.shape[0], chunk_size, self.config.max_action_dim)
        noise = self.sample_noise(actions_shape, device)

        x_t = noise.type(self.action_in_proj.weight.dtype)
        dt = torch.tensor(-1.0 / self.config.num_denoise_steps, device=device)
        time = torch.ones(inputs_embeds.shape[0], device=device)
        past_key_values = outputs.past_key_values

        action_mask = input_ids == self.config.action_token_id
        while time >= -dt / 2:
            action_time_embs = self.embed_suffix(time, x_t)
            inputs_embeds[action_mask] = action_time_embs.to(inputs_embeds.dtype)

            past_key_values.crop(prefix_len)
            outputs = self.vlm_backbone.model(
                position_ids=position_ids[..., prefix_len:suffix_len],
                attention_mask=attention_mask[:, :suffix_len],
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds[:, prefix_len:suffix_len],
                use_cache=True,
            )
            action_time_embs = outputs.last_hidden_state[:, :chunk_size]
            action_time_embs = action_time_embs.type(self.action_out_proj.dtype)
            v_t = self.action_out_proj(action_time_embs)

            x_t += dt * v_t.reshape(x_t.shape)
            time += dt
        return x_t

    def prepare_inputs_for_generation(self, *args, **kwargs):
        return self.vlm_backbone.prepare_inputs_for_generation(*args, **kwargs)

    def _expand_inputs_for_generation(self, *args, **kwargs):
        return self.vlm_backbone._expand_inputs_for_generation(*args, **kwargs)


EO1VisionFlowMatchingModel.register_for_auto_class()